原 子 力 施 設環境放射線調査報告書

(平成28年度第3四半期報)

青 森 県

まえがき

青森県は、原子力施設周辺における住民の安全確保及び環境の保全を図るため、 平成元年 4 月から原子燃料サイクル施設に係る環境放射線等モニタリング計画に基づき、日本原燃株式会社とともに環境放射線等の調査を、平成 15 年 4 月から東通原子力発電所に係る環境放射線モニタリング計画に基づき、東北電力株式会社とともに環境放射線の調査を、平成 20 年 4 月からリサイクル燃料備蓄センターに係る環境放射線モニタリング計画に基づき、リサイクル燃料備蓄センターに係る環境放射線で事前調査を実施しています。

県内の原子力施設の状況として、原子燃料サイクル施設については、平成 18 年 3 月 31 日から六ヶ所再処理工場においてアクティブ試験(使用済燃料による総合試験)を、東通原子力発電所については、平成 23 年 2 月 6 日から第 4 回定期検査を実施しています。リサイクル燃料備蓄センターについては、平成 22 年 8 月末から工事を開始し、平成 25 年 8 月 29 日に使用済燃料貯蔵建屋本体が完成しています。

本報告書は、平成28年度第3四半期について、青森県及び各事業者が実施した原子力施設周辺における空間放射線及び環境試料中の放射能濃度等の調査結果をとりまとめたものです。

平成 29 年 5 月

青 森 県

目 次

〔原子燃料サイクル施設〕

1.	調 査 概 要	3
	(1)実施者	3
	(2)期間	3
	(3)内容	3
	(4) 測定方法	3
2.	調 査 結 果	6
	(1)空間放射線	6
	(2)環境試料中の放射能	11
	(3) 環境試料中のフッ素	19
資		
	青森県実施分測定結果 ······	23
	(1)空間放射線量率測定結果	24
	①モニタリングステーションによる空間放射線量率(NaI)測定結果	24
	(参考)モニタリングステーションによる空間放射線量率(電離箱)測定結果	25
	②モニタリングポストによる空間放射線量率(NaI)測定結果	26
	③モニタリングカーによる空間放射線量率(NaI)測定結果	27
	(2) 積算線量測定結果(RPLD)	28
	(3)大気浮遊じん中の全α及び全β放射能測定結果	29
	(4)大気中の気体状 β 放射能測定結果(クリプトン-85換算) ····································	30
	(5)大気中のヨウ素-131測定結果	31
	(6)環境試料中の放射能測定結果	32
	(7)大気中の水蒸気状トリチウム測定結果	36
	(8) 大気中の気体状フッ素測定結果	37
	(9) 環境試料中のフッ素測定結果	37
	(10) 気象観測結果	38
	①風速・気温・湿度・降水量・積雪深	38
	②大気安定度出現頻度表	39
	③風配図	40
2.	事業者実施分測定結果	41
	(1)空間放射線量率測定結果	42
	①モニタリングステーションによる空間放射線量率(NaI)測定結果	42
	(参考)モニタリングステーションによる空間放射線量率(電離箱)測定結果	43
	(2) 積算線量測定結果(RPLD)	44
	(3)大気浮遊じん中の全α及び全β放射能測定結果	45
	(4)大気中の気体状 β 放射能測定結果(クリプトン-85換算) ····································	46
	(5)大気中のヨウ素-131測定結果	47

	(6)環境試料中の放射能測定結果	48
	(7)大気中の水蒸気状トリチウム測定結果	50
	(8)大気中の気体状フッ素測定結果	50
	(9)環境試料中のフッ素測定結果	51
	(10) 気象観測結果	52
	①風速·気温·湿度·降水量·積雪深	52
	②大気安定度出現頻度表	53
	③風配図	54
3.	原子燃料サイクル施設操業状況(事業者報告)	55
	(1)ウラン濃縮工場の操業状況	56
	(2)低レベル放射性廃棄物埋設センターの操業状況	58
	(3)高レベル放射性廃棄物貯蔵管理センターの操業状況	60
	(4)再処理工場の操業状況	61
	参考資料	65
	1. モニタリングポスト測定結果	66
	(1) 再処理事業所モニタリングポスト測定結果	66
	(2)濃縮・埋設事業所モニタリングポスト測定結果	68
	2. 再処理工場の液体廃棄物の放出量測定結果	69
	3. 再処理工場の気体廃棄物の放出量測定結果	70
	4. 気象観測結果	72
4.	原子燃料サイクル施設に係る環境放射線等モニタリング実施要領	75
5.	空間放射線等測定地点図及び環境試料の採取地点図	87
[]	東通原子力発電所 〕	
1.	調 査 概 要	93
	(1)実施者	93
	(2)期間	93
	(3)内容	93
	(4) 測定方法	93
2.	調査結果	96
	(1) 空間放射線	96
	(2)環境試料中の放射能	101
資	料	
	青森県実施分測定結果	109
	(1) 空間放射線量率測定結果	111
	①モニタリングステーションによる空間放射線量率(NaI)測定結果	111
	(参考)モニタリングステーションによる空間放射線量率(電離箱)測定結果	112

	②モニタリングポストによる空間放射線量率(NaI)測定結果	113
	(参考)モニタリングポストによる空間放射線量率(電離箱)測定結果	114
	③モニタリングカーによる空間放射線量率(NaI)測定結果	115
	(2)積算線量測定結果(RPLD)	116
	(3)大気浮遊じん中の全β放射能測定結果	117
	(4)大気中のヨウ素-131測定結果	117
	(5)環境試料中の放射能測定結果	118
	(6) 気象観測結果	120
	①風速・気温・湿度・降水量・積雪深	120
	②大気安定度出現頻度表	122
	③風配図	123
2.	事業者実施分測定結果	125
	(1)空間放射線量率測定結果	126
	①モニタリングポストによる空間放射線量率(NaI)測定結果	126
	(参考)モニタリングポストによる空間放射線量率(電離箱)測定結果	126
	(2)積算線量測定結果(RPLD)	127
	(3)環境試料中の放射能測定結果	128
	(4) 気象観測結果	130
	①降水量•積雪深	130
3.	東通原子力発電所の運転状況(事業者報告)	131
	(1)発電所の運転保守状況	132
	(2)放射性物質の放出状況	133
	参考資料	134
	1. モニタリングポスト測定結果	135
	2. 排気筒モニタ測定結果	136
	3. 放水口モニタ測定結果	136
	4. 気象観測結果	137
4.	東通原子力発電所に係る環境放射線モニタリング実施要領	139
5.	空間放射線の測定地点図及び環境試料の採取地点図	149
()	リサイクル燃料備蓄センター〕	
1.	調 査 概 要	157
	(1)実施者	157
	(2)期間	157
	(3)内容	157
	(4) 測定方法	157
2.	調査結果	159
	(1)空間放射線	159
	(2)環境試料中の放射能	161

資	料	
1.	青森県実施分測定結果	165
	(1)空間放射線量率測定結果	166
	①モニタリングポストによる空間放射線量率(NaI)測定結果	166
	(参考)モニタリングポストによる空間放射線量率(電離箱)測定結果	166
	(2)積算線量測定結果(RPLD)	167
	(3)環境試料中の放射能測定結果	167
	(4) 気象観測結果	167
	①降水量•積雪深	167
2.	事業者実施分測定結果	169
	(1)空間放射線量率測定結果	170
	①モニタリングポストによる空間放射線量率(NaI)測定結果	170
	(参考)モニタリングポストによる空間放射線量率(電離箱)測定結果	170
	(2)積算線量測定結果(RPLD)	171
	(3)環境試料中の放射能測定結果	171
	(4) 気象観測結果	171
	①降水量•積雪深	171
3.	リサイクル燃料備蓄センターに係る環境放射線モニタリング実施要領	173
4.	空間放射線の測定地点図及び環境試料の採取地点図	179
信〕	平価方法等〕	
1.	原子燃料サイクル施設に係る環境放射線等モニタリング結果の評価方法	185
2.	東通原子力発電所に係る環境放射線モニタリング結果の評価方法	191
3.	測定結果に基づく線量算出要領	197
4.	自然放射線等による線量算出要領	205

原子燃料サイクル施設

表中の記号(資料 3. 原子燃料サイクル施設操業状況を除く)

ー: モニタリング対象外を示す。

△: 今四半期の分析対象外を示す。

ND: 定量下限値未満を示す。分析室等で実施する環境試料中放射性核種の分析測定については、測定条件や精度を一定の水準に保つため、試料・核種毎に定量下限値を定めている(原子燃料サイクル施設に係る環境放射線等モニタリング実施要領 4.数値の取扱方法(5)別表 1、(6)別表 2 参照)。

*: 検出限界以下を示す。モニタリングステーションにおいて自動的に採取・測定している大気浮遊じん中の全アルファ及び全ベータ放射能については、測定条件(採取空気量等)が変動するため、測定値が計数誤差の3倍以下の場合を検出限界以下としている。

#: 平常の変動幅を外れた測定値を示す。

1 調査概要

(1) 実施者

青森県原子力センター 日本原燃株式会社

(2) 期間

平成 28 年 10 月~12 月 (平成 28 年度第 3 四半期)

(3) 内容

調査内容は、表 1-1、表 1-2(1)及び表 1-2(2)に示すとおりである。

(4) 測定方法

『原子燃料サイクル施設に係る環境放射線等モニタリング実施要領』による(「資料」参照)。

表 1-1 空間放射線

Strid	,t., -#	П		地	点	数
測	定項	目	測定頻度	区 分	青 森 県	事 業 者
空	モニタリングステ	÷ 3/-3//	連続	施設周辺地域	5	3
間		- > 3 >	建	比較対照(青森市)	1	_
放	モニタリンク	゛ポスト	連続	施設周辺地域	6	_
射線		定点測定	1 回/3 箇月	施設周辺地域	23	_
量	モニタリングカー	上 点 侧 足		比較対照(青森市)	1	_
率		走行測定	1 回/3 箇月	施設周辺地域	9ルート	_
D D	LD による積	算線量	3 箇 月	施設周辺地域	23	13
IN P		异 冰 里	積 算	比較対照(青森市)	1	_

表 1-2(1) 環境試料中の放射能及びフッ素(モニタリングステーション)

					地			Ķ	₹			数
					青	矛	k	県	事	¥ Ž	Ě	者
					全	β	日	フ	全	β	3	フ
試米	箏 の	種	類	測定頻度	α 全	放	ウ	ッ	α 全	放	ウ	ツ
					全β放射能	射	素		全 β 放射	射	素	
					能	能	131	素	能	能	131	素
施	大気	大気浮遊じ/		1 回/週	5	_	_	_	3	_	_	_
設周				· 法	_	5	_	_	_	3	_	_
辺地域	大		気	連続	_	_	_	1	_	_	_	3
域				1 回/週	_	_	5	_	_	_	3	_
比个	大気	浮遊し	こん	1 回/週	1	_	_	_	_	_	_	_
青 較				連続	_	1	_	_	_	_	_	_
森対市	大		気	連続	_	_	_	1	_	_	_	_
照				1 回/週	_	_	1	_	_	_	_	_

空間放射線量率測定器、ダストモニタ等の連続モニタ及び積算線量計を備えた野外測定設備

空間放射線量率測定器及び積算線量計を備えた野外測定設備

積算線量計を備えた野外測定設備

[・]モニタリングステーション

[・]モニタリングポスト

[・]モニタリングポイント

表1-2(2) 環境試料中の放射能及びフッ素(機器分析等)

				青 森 県									事		業		者								
				地			1	倹	Þ	本	娄	ţ			地			ŧ	倹	ſ.	本	娄	ţ		
					γ	١	炭	ス	П	プ	ア	キ	ウ	フ		γ	١	炭	ス	3	プ	ア	キ	ウ	フ
					線			1		ル	メ	ユ				線			ト		ル	メ	ュ		
試	料	り 種	類		l I	IJ		ロン	ウ	,	IJ	ij					リ		ロン	ウ	١.	IJ	ij		
				点	放	チ	素	チ		 	シ	ゥ	ラ	ツ	点	放	チ	素	チ	١		シ	ゥ	ラ	ッ
					出	,		ウ	素	11	ウ	ム				出			ウ	素	=	ウ	ر ا		
					核	ウ		ム		ウ	ム	_ 7				核	ウ	l ,	ム	l ,	ウ	ム			
				数	種	ム	14	90	129	ム	9/1	244	ン	素	数	種	ム	14	90	129	ム	 9/11	244	ン	素
	大 気	浮 遊 じ	ん	5	5	_	_	5	-	5	_	_	1	_	3	3	_	_	3	-	3		_	3	_
	大気(状)	$\frac{3}{2}$	_	6	_	-	_	-	_	_	_	_	3	-	9	_	-	_	-	_	_	-	_
		子状・気体		$\frac{2}{1}$	_	-	_	_	_	_	_	_	_	1	2	_	-	 	-	_	_	_	_	_	2
	雨	J 1/1 X(H	水水	1	_	3	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_
	降	下	物	1	3	ა _		Δ	_	Δ			Δ	_	_							_	_		\vdash
				-	-		_	_	_	_	_	_	_	\vdash	_	_	_	_	-	_	<u> </u>	_	_	_	_
17-1-:	河	 沼	水水	2	2	2	_		_	_	_	_	_	2			<u> </u>	_	<u> </u>	_	<u> </u>	_	_	<u> </u>	<u> </u>
陸	湖		水	3	4	4		2						3	2	4	4	_	4		4	_	_	4	4
	水		水	1	1	1	-	1	-	-	-	_	-	-	4	4	4	_	4	-	4	_	_	_	_
,	井	 底	水	1	1	1	_	1	-	_	-	_	-	-	2	2	2	\vdash	2	\vdash	_	_	_	_	_
上	和		土	2	2	-	-	-	-	-	-	-	-	2			_	_	Δ	_	Δ	-	-	Δ	
	湖	底	土	3	3	_	_	3	-	3	3	3	2	2	1	1	_	_	1	-	1	1	1	1	1
4.E	表	/ E 4	土	\triangle	Δ	_	_	Δ	Δ	Δ	Δ	Δ	Δ	-	\triangle		_	_	Δ	Δ	Δ	Δ	Δ	<u> </u>	\triangle
試	牛 乳	(原彩	<u>(</u>)	4	4	_	_	4	-	_	_	-	2	2	2	2	_	_	2	_	_	_	-	Δ	Δ
	精		*	3	3	_	3	3	-	3	-	-	2	1	3	3	_	3	3	_	3	_	_	2	2
alol .		ハクサイ、キャ		2	2	-	2	2	-	2	-	-	1	_	1	1	_	1	1	_	1	-	-	1	1
料	野菜	ダイコ		1_	1	-	1	1	-	1	-	-	1	-	_	_	_	-	_	-	-	-	-	-	-
		ナカ゛イモ、ハ゛Ӏ		1_	1	-	1	1	-	1	_	-	_	-	1	1	_	1	1	_	1	_	_	1	1
	牧		草	\triangle	Δ	-	_	Δ	-	Δ	_	-	Δ	Δ	\triangle	\triangle	_	_	Δ	_	_	_	-	Δ	Δ
	デン	トコー		_	_	-	-	-	-	-	-	-	-	-	\triangle	Δ	-	_	Δ	_	-	-	-	-	-
	淡水産	ワ カ サ		1	1	_	-	1	-	1	-	-	-	-	1	1	-	_	1	-	1	_	-	1	1
	食品	シジ	111	1	1	_	-	1	-	1	-	-	-	-	_	_	-	_	-	-	-	-	-	-	_
	指標生物	松	葉	1	1	-	_	-	-	-	-	-	1	-	-	-	_	_	-	_	_	_	-	_	_
	海		水	3	3	3	-	3	-	3	-	-	-	-	3	3	3	-	3	-	3	-	-	-	-
	海	底	土	3	3	-	-	3	-	3	3	3	-	-	1	1	-	-	1	-	1	1	1	-	-
海		ヒラメ、カ	レイ	1	1	1	_	1	-	1	-	-	-	-	Δ	Δ	Δ	_	Δ	_	Δ	-	-	-	-
744		イ	力	_	-	-	-	-	-	-	-	-	-	-	Δ	Δ	_	_	Δ	-	Δ	-	-	-	-
洋	海産食品	ホタテ、ア		\triangle	Δ	-	-	Δ	-	Δ	-	-	-	_	1	1	_	_	1	_	1	-	-	-	-
弒	17/11/11	ヒラツメ	ガニ	_	-	-	-	-	-	-	-	-	-	-	Δ	Δ	-	_	Δ	-	Δ	-	-	_	-
गर।		ウ	Ξ	_	-	-	-	-	-	-	-	-	-	-	Δ	Δ	-	_	Δ	-	Δ	-	_	-	-
料		コ ン	ブ	1	1	-	-	1	-	1	-	-	-	-	Δ	Δ	-	-	Δ	-	Δ	-	-	-	-
	指標生物	チガイ	イソ	1	1	-	-	1	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1月/水工/20	ムラサキイン	コガイ	1	1	-	-	1	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		浮 遊 じ		1	1	-	-	1	-	1	1	-	1	-	1	1	-	-	-	-	-	-	-	-	
比①	大 気(1	-	3	-	_	-	_	١	1	-	-		-	١	-	-		-	-		_	_
比較対照(青森市)	大気(粒	子状・気体	* 状)	1	_	-	-	_	-	_	-	-	-	1	_	-	_	-	_	_	-	-	-	-	
対常	表		土	Δ	Δ	-	_	Δ	Δ	Δ	Δ	Δ	Δ	_	-	ı	ı	_	-	-	-	_	_	-	_
焼し	精		米	1	_	-	1	-	-	-	_	-	_		_	_	_	_	-	-	_	_	_	-	_
	指標生物	松	葉	1	1	_	-	_	_	_	ı	-	1	-		ı	_	_	-	-	-	_	_	-	_
	=	<u></u>		E1	47	24	8	36	Δ	28	6	6	12	14	20	27	22	5	27	Δ	23	2	2	13	12
	Ī	+		51					18	31					30					13	33				
			0+240~																						

[・]プルトニウムはプルトニウム-239+240である。・ウランはウラン-234、ウラン-235及びウラン-238の合計である。

2 調査結果

平成 28 年度第 3 四半期(平成 28 年 10 月~12 月)における環境放射線等の調査結果は、これまで と同じ水準***であった。

原子燃料サイクル施設からの影響は認められなかった。

(1) 空間放射線

モニタリングステーション、モニタリングポスト及びモニタリングカーによる空間放射線量率測定並びに RPLD(蛍光ガラス線量計)による積算線量測定を実施した。

① 空間放射線量率(NaI)

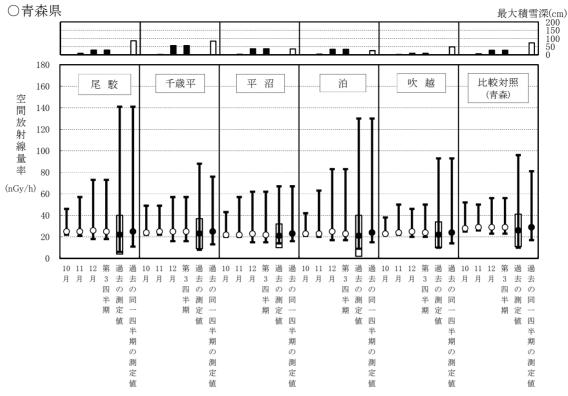
(a) モニタリングステーション(図 2-1)及びモニタリングポスト(図 2-2)

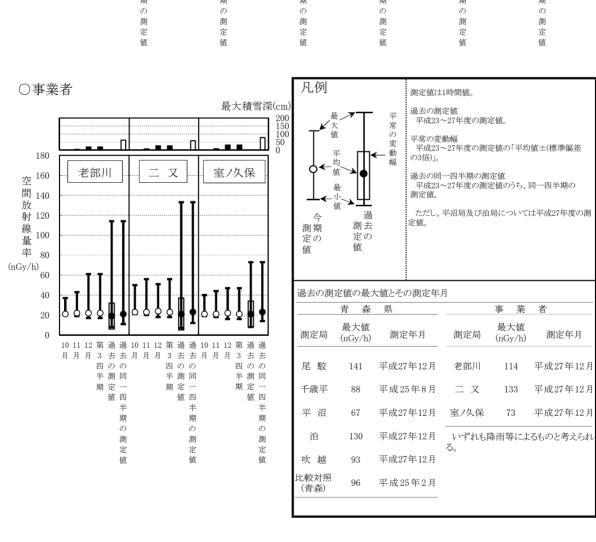
各測定局における今四半期の平均値は $21\sim 33~{\rm nGy/h}$ 、最大値は $47\sim 93~{\rm nGy/h}$ 、最小値は $15\sim 30~{\rm nGy/h}$ であり、月平均値は $21\sim 34~{\rm nGy/h}$ であった。

平常の変動幅³²²を上回った測定値は、すべて降雨等³³²によるものと考えられる。このうち、砂子又局において過去の測定値³⁴⁴の範囲を上回った測定値があったが、降雨雪とともに落下した天然放射性核種の影響と考えられる。

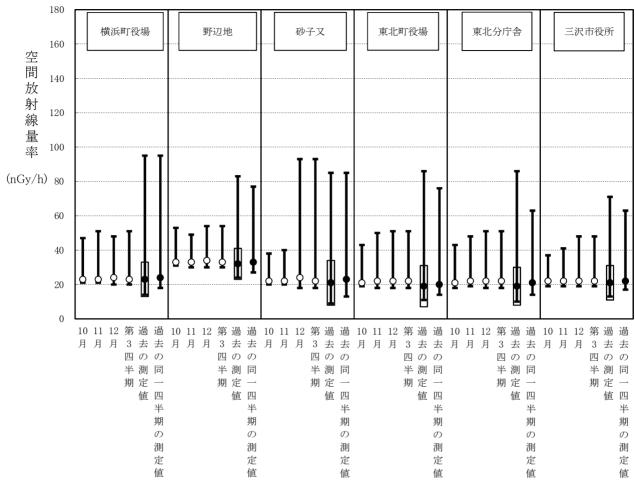
(b) モニタリングカー(図 2-3)

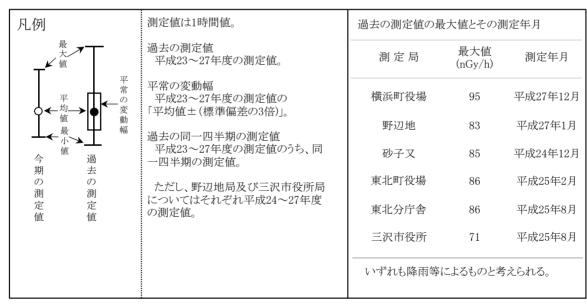
定点測定における測定値は $13\sim 21~{\rm nGy/h}$ 、走行測定における測定値は $13\sim 24~{\rm nGy/h}$ であり、過去の測定値 *4 の範囲内であった。

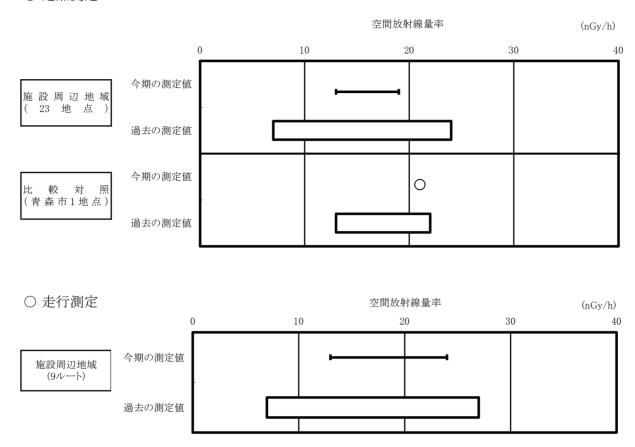

② RPLD による積算線量(図 2-4)


測定値は 84 ~ 112 μ Gy/91 日であり、すべて平常の変動幅の範囲内であった。

※1:「(概ね)これまでと同じ水準」


- ・「これまでと同じ水準」は、測定結果について、平常の変動幅の範囲内である場合及び範囲を外れた要因が、降雨、降雪等の気象 要因、医療・産業に用いる放射性同位元素の影響等と判断される場合を示す。
- ・「概ねこれまでと同じ水準」は、県内外の原子力施設からの影響により、一部の測定値が平常の変動幅を上回ったが、全体的にはこれまでと同じ水準(住民等の線量が法令に定める周辺監視区域外の線量限度(年間1ミリシーベルト)を十分に下回るような水準にあること)と判断される場合を示す。
- ※2:「平常の変動幅」は、空間放射線量率(モニタリングステーション及びモニタリングポスト)については「過去の測定値」の「平均値±(標準偏差の3倍)」、RPLDによる積算線量については「過去の測定値」の「最小値~最大値」。
- ※3:「降雨等」とは、「降雨、降雪、雷雨、積雪等の気象要因及び地理・地形上の要因等の自然条件の変化」、「医療・産業に用いる放射性同位元素等の影響」、「国内外の他の原子力施設からの影響」などである。空間放射線量率は、降雨雪時に雨や雪に取り込まれて地表面に落下したラドンの壊変生成物の影響により上昇し、積雪により大地からの放射線が遮へいされることにより低下する。また、医療・産業に用いる放射性同位元素等の影響により測定値が上昇することがある。
- ※4:「過去の測定値」は空間放射線については前年度までの5年間(平成23~27年度)の測定値。


図2-1 モニタリングステーションによる空間放射線量率(NaI)測定結果


図2-2 モニタリングポストによる空間放射線量率(NaI)測定結果

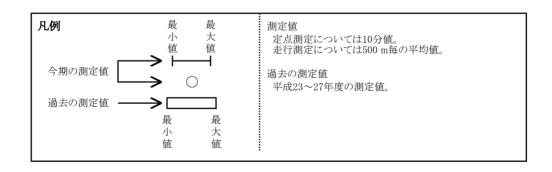
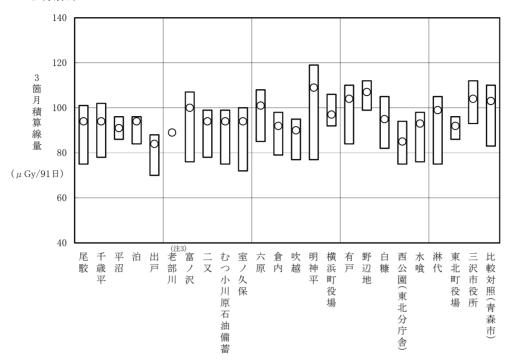
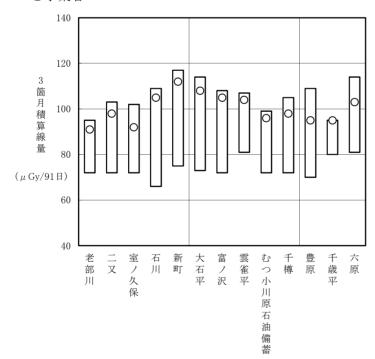
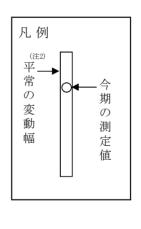


図2-3 モニタリングカーによる空間放射線量率測定結果


○ 定点測定




図2-4 RPLDによる積算線量測定結果(注1)

○青森県

○事業者

- (注1) 測定値は宇宙線の一部及び自己照射の線量を含む。
- (注2)「平常の変動幅」は平成23~27年度の3箇月積算線量測定値の「最小値~最大値」。

ただし、平沼及び泊については平成27年度、野辺地については平成24~27年度、千歳平(事業者)については平成26年7月~平成28年3月の3箇月積算線量測定値の「最小値~最大値」。

(注3) 老部川については、平成28年度第2四半期の測定期間中に測定場所を移動した。平常の変動幅については平成28年度第3四半期から新たにデータの蓄積を行い、1年間以上のデータが蓄積された時点で平常の変動幅として用いる。

(2) 環境試料中の放射能

大気浮遊じん中の全 α (アルファ)及び全 β (ベータ)放射能測定、大気中の気体状 β 放射能測定、大気中のヨウ素-131 測定、機器分析及び放射化学分析を実施した。

① 大気浮遊じん中の全 $_{\alpha}$ 及び全 $_{\beta}$ 放射能測定 ** (表 2-1)

測定値は、 $全 \alpha$ 放射能が $0.024 \sim 0.14 \,\mathrm{mBq/m^3}$ 、全 β 放射能が $0.28 \sim 1.3 \,\mathrm{mBq/m^3}$ であり、いずれも 平常の変動幅³⁶の範囲内であった。

② 大気中の気体状β放射能測定(表 2-2)

測定値はすべて ND であり、平常の変動幅の範囲内であった。

③ 大気中のヨウ素-131 測定(表 2-3)

測定値はすべて ND であり、平常の変動幅の範囲内であった。

④ 機器分析及び放射化学分析

γ (ガンマ)線放出核種については、ゲルマニウム半導体検出器による機器分析を、トリチウム、炭素-14、ストロンチウム-90、プルトニウム、アメリシウム-241、キュリウム-244 及びウランについては、放射化学分析を 実施した。ヨウ素-129 については、今期の分析対象外である。

○ γ線放出核種分析(表 2-4)

セシウム-137の測定値は、湖底土が4 \sim 9 Bq/kg 乾、その他はすべてND であり、平常の変動幅の範囲内であった。

その他の人工放射性核種については、すべて ND であった。

○ トリチウム分析(表 2-5)

測定値はすべて ND であり、平常の変動幅の範囲内であった。

○ 炭素-14分析(表 2-6)

精米の放射能濃度 *7 が 86 \sim 89 Bq/kg 生、比放射能 *7 が 0.23 \sim 0.24 Bq/g 炭素であり、ハクサイ・キャベツの放射能濃度が5 \sim # 10 Bq/kg 生、比放射能が 0.23 \sim 0.24 Bq/g 炭素、ダイコンの放射能濃度が # 6 Bq/kg 生、比放射能が 0.23 Bq/g 炭素、ナガイモの放射能濃度が 16、17 Bq/kg 生、比放射能が 0.23 Bq/g 炭素であった。このうち、キャベツ(横浜町)の放射能濃度は # 10 Bq/kg 生、ダイコン(出戸)の

^{※5:168}時間集じん終了後72時間放置、1時間測定。

^{※6:「}平常の変動幅」は、環境試料中の放射能については、調査を開始した年度から前年度までの測定値の「最小値~最大値」

^{※7:} 炭素-14の比放射能は、試料中の炭素1 gに含まれる炭素-14の放射能量(Bq)であり、施設からの影響を評価する指標となる。放射能濃度(Bq/kg生)は、比放射能(Bq/g炭素)に試料中の炭素量(g炭素/kg生)を乗じて求められるため、比放射能が等しい場合でも、試料中の炭素量(g炭素/kg生)によって変動する。なお、試料中の炭素量(新鮮重量当たりの炭素量)は、水分含有量によって変動することがある。

放射能濃度は#6 Bq/kg生であり、平常の変動幅を上回ったが、比放射能は平常の変動幅の範囲内であった。これらは、これまでより試料中の水分含有量が少なく、炭素量の割合が多かったためと考えられる。

○ ストロンチウム-90分析(表 2-7)

井戸水が ND $\sim 3.8 \, \text{mBq/\ell}$ 、ハクサイ・キャベツが ND $\sim 0.15 \, \text{Bq/kg}$ 生、ダイコンが $0.16 \, \text{Bq/kg}$ 生、ナガイモが ND、 $0.04 \, \text{Bq/kg}$ 生、チガイソが $0.05 \, \text{Bq/kg}$ 生、その他はすべて ND であり、平常の変動幅の範囲内であった。

○ プルトニウム分析(表 2-9)

湖底土が $0.23\sim0.90~{\rm Bq/kg}$ 乾、海底土が $0.25\sim0.54~{\rm Bq/kg}$ 乾、アワビが $0.002~{\rm Bq/kg}$ 生、コンブ が $0.003~{\rm Bq/kg}$ 生、その他はすべて ND であり、平常の変動幅の範囲内であった。

○ アメリシウム-241 分析(表 2-10)

湖底土が $0.13 \sim 0.33$ Bq/kg 乾、海底土が $0.10 \sim 0.21$ Bq/kg 乾であり、平常の変動幅の範囲内であった。

○ キュリウム-244 分析(表 2-11)

測定値は、これまでと同様にすべて ND であった。

○ ウラン分析(表 2-12)

湖沼水が $47 \sim 64 \,\mathrm{mBq/\ell}$ 、湖底土が $73 \sim 120 \,\mathrm{Bq/kg}$ 乾、ワカサギが $0.03 \,\mathrm{Bq/kg}$ 生、松葉が0.02、 $0.03 \,\mathrm{Bq/kg}$ 生、その他はすべて ND であり、平常の変動幅の範囲内であった。

大気浮遊じん中の全α及び全β放射能測定結果 表2-1

(単位:mBg/m³)

実施者	測	定	局	測	Ź	定		値	平	常	Ø	変	動	幅
天 旭 旬	例	足	/FJ	全	α	全		β	全		α	全		β
青	尾		駮	0.036	~ 0.094	0.57	~ 1.2		*	~ 0	.24	*	~ 1.7	7
''	千	歳	平	0.043	~ 0.077	0.58	~ 1.1		*	~ 0	.21	*	~ 1.6	3
森	平		沼	0.040	~ 0.11	0.59	~ 1.1		*	~ 0	.23	*	~ 1.7	7
林		泊		0.026	~ 0.089	0.52	~ 1.2		*	~ 0	.19	*	~ 1.5	5
	吹		越	0.024	~ 0.083	0.59	~ 1.3		*	~ 0	.28	*	~ 1.4	1
県	比較	を対照(青	膏森)	0.038	~ 0.10	0.60	~ 1.2		*	~ 0	.22	*	~ 1.6	3
事	老	部	Щ	0.036	~ 0.084	0.34	~ 0.78	}	*	~ 0	.22	*	~ 1.1	1
事業者			又	0.041	~ 0.14	0.28	~ 0.71		*	~ 0	.37	*	~ 1.3	3
者	室	ノ久	保	0.029	~ 0.079	0.41	~ 0.90)	*	~ 0	.21	*	~ 1.3	3

表 2-2 大気中の気体状 β 放射能測定結果(クリプトン-85 換算)

(単位:kBq/m³)

									(参 考)
実施者	測	定	局	定量	測	定	値	平常の変動幅	定量下限値以上 となった時間数	アクティブ 試験開始前の
				TIME					(うち、平常の変動幅を) 上回った時間数)	測定値の範囲
青	尾		駮			ND		ND \sim 9	0(0)	ND
'	千	歳	平			ND		ND ~ 4	0(0)	ND
*	平		沼	2		ND		ND	0(0)	ND
森		泊		2		ND		ND ~ 2	0(0)	ND
	吹		越			ND		ND ∼11	0(0)	ND
県	比較	対照(青	森)			ND		ND	0(0)	ND
事	老	部	Ш			ND		ND \sim 3	0(0)	ND
事業者			又	2		ND		ND \sim 8	0(0)	ND
者	室	ノク	保			ND		ND \sim 6	0(0)	ND

・測定値は1時間値。

表2-3 大気中のヨウ素-131測定結果

(単位:mBq/m³)

実施者	測	定	局	定量 下限値	測 定	値	平	常	Ø	変	動	幅
青	尾		駮		ND				N	D		
''	千	歳	平		ND				N	D		
*	平		沼	0.2	ND				N	D		
森		泊		0.2	ND	ND NI						
	吹		越		ND				N	D		
県	比較	対照(青	f 森)		ND				N	D		
事	老	部	Щ		ND				N	D		
事業者	<u> </u>		又	0.2	ND				N	D		
者	室	ノー久	保		ND				N	D		

^{・「}平常の変動幅」の期間は、青森県実施分については平成17~27年度の測定値の「最小値~最大値」。事業者実施分について は平成 10~27 年度の測定値の「最小値~最大値」。ただし、東京電力ホールディングス(株)福島第一原子力発電所の事故の 影響が考えられる測定値は平常の変動幅の設定に用いていない(平成 22 年度報 付 10 及び平成 23 年度報 付 16 参照)。

^{・168} 時間集じん終了後72 時間放置、1 時間測定。 ・「平常の変動幅」は尾駮局及び二又局については平成元~27年度、それ以外は平成2~27年度の測定値の「最小値~最大値」。 ただし、東京電力ホールディングス(株)福島第一原子力発電所の事故の影響が考えられる測定値は平常の変動幅の設定に用 いていない(平成23年度報付16参照)。

[・]例に個は 1 時間他。 ・測定時間数は 3 箇月間で約 2,200 時間。 ・「平常の変動幅」は平成 6~27 年度の測定値の「最小値~最大値」。 ・「アクティブ試験開始前の測定値の範囲」は平成 6~17 年度の測定値の「最小値~最大値」。

表 2-4 γ 線放出核種分析結果

						セ	シウ・	ム - 13	37	
試 米	斗の種類	単 位	定量下限値	青	森県		事	業	者	平常の変動幅
			TRAIL	検体数	測 定	値	検体数	測 定	値	半吊の変動幅
陸	大気浮遊じん	mBq/m^3	0.02	5	ND		3	NE)	ND
	降下物(月間)	$\mathrm{Bq/m^2}$	0.2	3	ND		_	_		ND \sim 0.7
	河 川 水			2	ND		\triangle	\triangle		ND
	湖沼水	mBq∕ℓ	6	4	ND		4	NE)	ND
	水 道 水	IIIDq/ &	0	1	ND		4	NE)	ND
	井 戸 水			1	ND		2	NE)	ND
上	河 底 土		3	2	ND		\triangle	\triangle		ND \sim 12
	湖底土	Bq/kg 乾	4	3	4~9		1	4		ND \sim 55
	表土		3	\triangle	Δ		\triangle	\triangle		ND \sim 36
	牛乳(原乳)	Bq∕ℓ	0.4	4	ND		2	NE)	ND
ļ	精米			3	ND		3	NE)	ND \sim 1.0
	野ハクサイ、キャベツ			2	ND		1	NI		ND
試	ダイコン			1	ND		_	_		ND
	菜 ナガイモ、バレイショ			1	ND		1	NE		ND
	牧草	Bq/kg 生	0.4	Δ	Δ		\triangle	\triangle		ND ~ 1.1
	デントコーン			_	_		\triangle	\triangle		ND
	食淡 ワカサギ			1	ND		1	NE		ND
यहा	品産シジミ			1	ND		_	_		ND
料	指標生物 松 葉			1	ND		_	_		ND
海	海水	mBq/ℓ	6	3	ND		3	NE		ND \sim 6
	海底土	Bq/kg 乾	3	3	ND		1	NE		ND
	海ピラメ			1	ND		\triangle	\triangle		ND
洋	オカ				_		\triangle	\triangle		ND
	産ホタテ、アワビ			\triangle	Δ		1	NE		ND
⇒ N	食とラツメガニ	Bq/kg 生	0.4	_	_		\triangle	\triangle		ND
試	ウニ			_	_		\triangle	\triangle		ND
	品コンブ			1	ND		\triangle	\triangle		ND
料	指標 生物 ようサキイソコガイ			1	ND		_	_		ND
				1	ND		_	_		ND
比一青	大気浮遊じん	mBq/m³	0.02	1	ND		_	_		ND
較対照	表土	Bq/kg 乾	3	\triangle	\triangle		_			ND \sim 7
市 照)	指標生物 松 葉	Bq/kg 生	0.4	1	ND		_	_		ND
	計	_	_	47	_		27	_		_

[・]測定対象核種はマンガン-54、コバルト-60、ルテニウム-106、セシウム-134、セシウム-137、セリウム-144、ベリリウム-7、カリウム-40、ビスマス-214、アクチニウム-228。

^{・「}平常の変動幅」は平成元~27 年度の測定値の「最小値~最大値」。ただし、東京電力ホールディングス(株)福島第一原子力発電所の事故の影響が考えられる測定値については平常の変動幅の設定に用いていない(平成 22 年度報 付 10、平成 23 年度報 付 16、平成 24 年度報 付 10、平成 25 年度報 付 7、平成 26 年度報 付 5 及び平成 27 年度報 付 8 参照)。

表 2-5 トリチウム分析結果

				青系	柒 県	事	業者		参 考
試料	の種類	単位	定 量下限値	検体数	測定値	検体数	測定値	平常の変動幅	アクティブ 試験開始前の 測定値の範囲
	大気(水蒸気状)	mBq/m³	40	6	ND	9	ND	ND	ND
	雨水			3	ND	_	_	ND	ND
 陸上試料	河川水			2	ND	\triangle	\triangle	ND \sim 2	ND \sim 2
医工政科	湖沼水	Bq∕ℓ	2	4	ND	4	ND	ND \sim 3	ND
	水 道 水			1	ND	4	ND	ND \sim 3	ND \sim 3
	井 戸 水			1	ND	2	ND	ND \sim 3	ND ~ 3
	海水	Bq∕ℓ	2	3	ND	3	ND	ND	ND
海洋試料	海産 ヒラメ 食品 ^(自由水)	Bq/kg 生	2	1	ND	\triangle	Δ	$ND \sim 3$	ND
比較対照 (青森市)	大気(水蒸気状)	mBq/m³	40	3	ND	-	_	ND	ND
	計	_	_	24	_	22	_	_	_

^{・「}平常の変動幅」は平成元~27 年度の測定値の「最小値~最大値」。ヒラメ(自由水)については平成 10~27 年度の測定値の 「最小値~最大値」。

表 2-6 炭素-14 分析結果

					青系	柒 県	事業	美 者		参 考
試料(か	種類	単位	定 量下限値	検体数	測定値	検体数	測定値	平常の変動幅	アクティブ 試験開始前の 測定値の範囲
			Bq/kg 生	2		86~89		86~89	85 ~ 110	$87 \sim 110$
	精	米	Bq/g 炭素	0.004	3	0.23~ 0.24	3	0.23~ 0.24	$0.23 \sim 0.26$	$0.23 \sim 0.26$
			Bq/kg 生	2		6,#10		5	$3 \sim 7$	$3 \sim 7$
 陸上試料	野	ハクサイ、 キャベツ	Bq/g 炭素	0.004	2	0.23, 0.24	1	0.23	$0.23 \sim 0.27$	$0.24 \sim 0.25$
		ガノコン	Bq/kg 生	2	1	#6		-	$4 \sim 5$	4
	菜	ダイコン	Bq/g 炭素	0.004	1	0.23		_	$0.23 \sim 0.24$	0.24
		ナガイモ、	Bq/kg 生	2	1	17	1	16	$14 \sim 21$	$16 \sim 18$
		バレイショ	Bq/g 炭素	0.004	1	0.23	1	0.23	$0.23 \sim 0.26$	$0.24 \sim 0.25$
比較対照	精	米	Bq/kg 生	2	1	87	_	_	$87 \sim 97$	88 ~ 97
(青森市)	17月	八	Bq/g 炭素	0.004	1	0.23		_	$0.23 \sim 0.26$	$0.24 \sim 0.26$
	計		_	-	8	_	5	_	_	_

^{・「}平常の変動幅」は精米については平成7~27年度の測定値の「最小値~最大値」。野菜については平成17~27年度の測定値の「最小値~最大値」。

^{・「}アクティブ試験開始前の測定値の範囲」は平成元~17年度の測定値の「最小値~最大値」。ヒラメ(自由水)については平成10~17年度の測定値の「最小値~最大値」。

^{・「}アクティブ試験開始前の測定値の範囲」は精米については平成7~17年度の測定値の「最小値~最大値」。野菜については平成17年度の測定値の「最小値~最大値」。

表 2-7 ストロンチウム-90 分析結果

w 4€		出 生	定量	青	森 県	事	業者	立場の亦利は
試彩	4の種類	単位	下限値	検体数	測定値	検体数	測 定 値	平常の変動幅
陸	大気浮遊じん	mBq/m^3	0.004	5	ND	3	ND	ND
<u> </u>	降下物(年間)	Bq/m²	0.08	\triangle	\triangle	_	_	$0.10 \sim 0.26$
	河 川 水		0.4	1	-	\triangle	\triangle	$0.4 \sim 2.5$
	湖沼水	mBq/ℓ	2	2	ND	4	ND	ND \sim 3
	水 道 水	шьу/ е	0.4	1	ND	4	ND	ND \sim 1.5
	井 戸 水		0.4	1	ND	2	ND, 3.8	ND \sim 28
上	河 底 土			_	_	\triangle	\triangle	ND \sim 0.6
	湖底土	Bq/kg 乾	0.4	3	ND	1	ND	ND \sim 6.2
	表土			\triangle	\triangle	\triangle	\triangle	ND \sim 9.1
	牛乳(原乳)	Bq∕ℓ	0.04	4	ND	2	ND	ND \sim 0.08
	精米			3	ND	3	ND	ND
試	野ハクサイ、キャベツ			2	0.05, 0.15	1	ND	ND \sim 0.87
	ダイコン			1	0.16	-	_	$0.09 \sim 0.81$
	菜 ナカイモ、ハレイショ	Bq/kg 生	0.04	1	0.04	1	ND	ND \sim 0.24
	牧 草	D4/ 118 11.		\triangle	\triangle	\triangle	Δ	ND \sim 2.5
	デントコーン			_	_	\triangle	\triangle	$0.06 \sim 0.72$
Jol.	食淡ワカサギ			1	ND	1	ND	ND \sim 0.08
料	品産 シ ジ ミ			1	ND	_	_	ND \sim 0.08
海	海水	mBq/ℓ	2	3	ND	3	ND	ND \sim 3
	海底土	Bq/kg 乾	0.4	3	ND	1	ND	ND \sim 0.5
	海ピラメ			1	ND	\triangle	\triangle	ND
洋	イ カ			_	_	\triangle	\triangle	ND
	産ホタテ、アワビ			Δ	\triangle	1	ND	ND
	食とラツメガニ	Bq/kg 生	0.04	_	_	\triangle	\triangle	ND \sim 0.28
試	ウニ	- 4/3	0.01	_	_	\triangle	Δ	ND
	品コンブ			1	ND	\triangle	\triangle	ND ~ 0.14
水口	指標 生物 は カナナイソコガイ			1	0.05	_	_	ND \sim 0.09
料	参りなうサキインコガイ			1	ND	_	_	ND
比較対照(青森市)	大気浮遊じん	mBq/m³	0.004	1	ND	_	_	ND
対照 ()	表 土	Bq/kg 乾	0.4	\triangle	Δ	-	_	$0.4 \sim 2.3$
	計	_	_	36	_	27	-	-
F 116 244 a	7変動幅 は巫战テヘ		Nu + /+ -		日 1.7士・ よより	+++	ールディングス(株	\

^{・「}平常の変動幅」は平成元~27年度の測定値の「最小値~最大値」。ただし、東京電力ホールディングス(株)福島第一原子力発電所の事故の影響が考えられる測定値については平常の変動幅の設定に用いていない(平成23年度報付16参照)。

表 2-8 ヨウ素-129 分析結果

試料の	種	類	単 位	定 量 下限値	青 検体数	森測	定	県値	事 検体数	業測	定	者値	平常の変動幅
陸上試料	表	土			\triangle		\triangle		\triangle		\triangle		ND
比較対照 (青森市)	表	土	Bq/kg 乾	5	\triangle		\triangle		-		_		ND
計			_	_	\triangle		_		\triangle		_		_

^{・「}平常の変動幅」は、平成10~27年度の測定値の「最小値~最大値」。

表 2-9 プルトニウム分析結果

			定量	青	森県	事	業 者	<u> </u>
試 彩	中の種類	単 位	下限値	検体数	測定値	ず 検体数	<u></u> 測 定 値	平常の変動幅
17.14	大気浮遊じん	mBq/m³	0.0002	5	ND	没件 数	ND	ND
陸	降下物(年間)	Bq/m ²	0.0002	\triangle	\triangle	_	- ND	$ND \sim 0.029$
	河川水	Dq/ III	0.001	_		Δ	Δ	ND 0.025
	湖沼水	mBq/ℓ	0.02	_	_	4	ND	ND
	水道水	пьч, с	0.02	_	_	4	ND	ND
上	河底土			_	_	Δ	Δ	$ND \sim 0.07$
	湖底土	Bq/kg 乾	0.04	3	0.23~0.82	1	0.90	$0.23 \sim 8.0$
	表土			Δ	\triangle	Δ	\triangle	ND \sim 0.79
Ì	精米			3	ND	3	ND	ND
試	野ハクサイ、キャベツ			2	ND	1	ND	ND
μч	ダイコン			1	ND	_	_	ND
	菜ササイモ、バレイショ	Bq/kg 生	0.002	1	ND	1	ND	ND
	牧草			\triangle	\triangle	_	_	ND
	食淡 ワカサギ			1	ND	1	ND	ND
料	水品産シジミ			1	ND	_	-	ND
海	海水	mBq/l	0.02	3	ND	3	ND	ND
	海 底 土	Bq/kg 乾	0.04	3	$0.29 \sim 0.54$	1	0.25	$0.11 \sim 0.90$
	海上ラメ			1	ND	\triangle	\triangle	ND
洋	イカ			_	_	\triangle	\triangle	ND
	産ホタテ、アワビ			Δ	\triangle	1	0.002	ND \sim 0.022
	食ピラツメガニ	D /1 //.	0.000	1	_	\triangle	\triangle	ND
試	ウニ	Bq/kg 生	0.002	_	_	Δ	\triangle	ND ~ 0.005
	品コンブ			1	0.003	Δ	\triangle	ND ~ 0.007
	指チガイソ			1	ND	_	_	ND ~ 0.017
料	標生物は対象を			1	ND	_	_	ND ~ 0.005
比較対	大気浮遊じん	mBq/m³	0.0002	1	ND	-	-	ND
(対照	表 土	Bq/kg 乾	0.04	Δ	Δ	_	-	ND \sim 0.21
	計	_	_	28	-	23	_	_

[・] プルトニウムはプルトニウム-239+240。

^{・「}平常の変動幅」は平成元~27年度の測定値の「最小値~最大値」。

表 2-10 アメリシウム-241 分析結果

試料の	種 類	単位	定 量下限値	青 検体数	森 県 測 定 値	事検体数	業 者 測 定 値	平常の変動幅
陸上試料	湖底土			3	0.13~0.33	1	0.33	$0.12 \sim 1.1$
	表土			\triangle	Δ	Δ	Δ	ND \sim 0.25
海洋試料	海底土	Bq/kg 乾	0.04	3	0.10~0.21	1	0.10	ND \sim 0.34
比 較 対 照 (青森市)	表土			\triangle	Δ	-	_	$0.04 \sim 0.10$
計		_	_	6	_	2	_	_

^{・「}平常の変動幅」は平成14~27年度の測定値の「最小値~最大値」。

表 2-11 キュリウム-244 分析結果

試	料	Ø	種	類	単位	定 量	青	森		県	事	業		者	平常の変動幅
Th./	14	V)	1里	炽	平位	下限値	検体数	測	定	値	検体数	測	定	値	十市の友勢が田
陸	上試	料	湖區	土廷			3		ND		1		ND		ND
	一 时	\ 17	表	土			\triangle		\triangle		\triangle		\triangle		ND
海	洋試	料	海區	土建	Bq/kg 乾	0.04	3		ND		1		ND		ND
比 (青	較 対 計森	· 照 市)	表	土			\triangle		Δ		ı		-		ND
		計			_	-	6		_		2		_		_

^{・「}平常の変動幅」は平成14~27年度の測定値の「最小値~最大値」。

表 2-12 ウラン分析結果

試米	斗の種類	単 位	定 量	青	森 県	事	業者	平常の変動幅
μ-V /J		+ 4	下限値	検体数	測定値	検体数	測 定 値	11100 交到市
陸	大気浮遊じん	${\rm mBq/m^3}$	0.0004	1	ND	3	ND	ND \sim 0.0035
	降下物(年間)	$\mathrm{Bq/m^2}$	0.008	\triangle	\triangle	_	_	$0.63 \sim 3.4$
	河 川 水	D/0	2	_	_	\triangle	\triangle	ND \sim 10
	湖沼水	mBq∕0	Δ	_	_	4	47~64	$5 \sim 78$
	河 底 土			-	_	\triangle	\triangle	$2.7 \sim 29$
上	湖底土	Bq/kg 乾	0.8	2	73, 120	1	100	$52 \sim 140$
	表 土			\triangle	\triangle	\triangle	\triangle	$5.4 \sim 95$
	牛乳(原乳)	Bq/ϱ	0.02	2	ND	\triangle	\triangle	ND
	精 米			2	ND	2	ND	ND
試	野ハクサイ			1	ND	1	ND	ND
" \	ダイコン			1	ND	_	_	ND
	菜 ナガイモ、バレイショ	Bq/kg 生	0.02	_	_	1	ND	ND
	牧草			\triangle	\triangle	\triangle	\triangle	ND \sim 0.60
	淡水産食品 ワカサギ			_	_	1	0.03	$0.03 \sim 0.10$
料	指標生物 松 葉			1	0.03	_	_	$0.03 \sim 0.11$
比全	大気浮遊じん	mBq/m^3	0.0004	1	ND	_	_	ND \sim 0.0013
較素	表 土	Bq/kg 乾	0.8	Δ	\triangle	_	_	17 ~ 38
比較対照	指標生物 松 葉	Bq/kg 生	0.02	1	0.02	-	_	0.02 ~ 0.24
	計	_	_	12	_	13	_	_

[・] ウランはウラン-234、ウラン-235 及びウラン-238 の合計。

^{・「}平常の変動幅」は平成元~27年度の測定値の「最小値~最大値」。

(3) 環境試料中のフッ素

モニタリングステーションにおける大気中の気体状フッ素測定及び環境試料中のフッ素測定を実施した。

- 大気中の気体状フッ素(表 2-13)
 測定値は、これまでと同様にすべて ND であった。
- ② 環境試料中のフッ素(表 2-14)

湖沼水が $0.4 \sim 0.6$ mg/ ℓ 、河底土が 55、98 mg/kg 乾、湖底土が $110 \sim 180$ mg/kg 乾、ワカサギが 15 mg/kg 生、その他はすべて ND であり、平常の変動幅³⁸⁸の範囲内であった。

^{※8:「}平常の変動幅」は、環境試料中のフッ素については、調査を開始した年度から前年度までの測定値の「最小値~最大値」。

表 2-13 大気中の気体状フッ素測定結果(HF モニタによる連続測定)

(単位:ppb)

実	施	者	測	Ę	È	局	定下	限	量 値	測	定	値	平	常	0)	変	動	幅
青	森	県	尾			駮					ND				N	D		
l l	<i>1</i> /11	211	比較	対照	段(青	森)					ND				N	D		
			老	台	羽	Щ	(0.04			ND				N	D		
事	業	者	<u> </u>			又					ND				N	D		
			室	1	久	保					ND				N	D		

^{・「}平常の変動幅」は尾駮局及び二又局については平成元~27 年度、それ以外は平成 2~27 年度の測定値の「最小値~最大値」。

表 2-14 環境試料中のフッ素測定結果

試 料	· 0,	種	類	単位	定 量下限値	青 検体数	森 測 定	県値	事 検体数	業測	定	者値	平常の変動幅
	大	気(粒子状	:•気体状)	$\mu \mathrm{g/m^3}$	0.03	1	ND		2		ND		ND
	河	Щ	水	/O	0.1	2	ND		Δ		\triangle		ND
陸	湖	沼	水	mg/Q	0.1	3	0.4~0.	6	4	0.	5 ~ 0.6		ND \sim 0.9
	河	底	土			2	55, 98		Δ		\triangle		$33 \sim 150$
上	湖	底	土	mg/kg 乾	5	2	110, 18	0	1		180		10 ~ 200
	表		土			_	_		\triangle		\triangle		$230 \sim 390$
4.€	牛	乳(原	[乳)	mg/ℓ	0.1	2	ND		\triangle		\triangle		ND \sim 0.1
試	精		米			1	ND		2		ND		ND \sim 0.6
nto I	野	ハク	サイ			_	_		1		ND		ND \sim 0.4
料	菜	ナガイモ、	バレイショ	mg/kg 生	0.1	_	_		1		ND		ND \sim 0.1
	牧		草			\triangle	\triangle		\triangle		\triangle		ND \sim 0.5
	淡水	産食品 ワ	カサギ			_	_		1		15		$4.7 \sim 30$
比較対照(青森市	- / ·	気(粒子状	· 気体状)	μ g/m ³	0.03	1	ND		-		-		ND
	量	-		_	_	14	_		12		-		_

^{・「}平常の変動幅」は平成元~27年度の測定値の「最小値~最大値」。

資料

核種等の記号及び名称

³H,H-3 : トリチウム
⁷Be,Be-7 : ベリリウム-7
¹⁴C,C-14 : 炭素-14
⁴⁰K,K-40 : カリウム-40
⁵¹Cr,Cr-51 : クロム-51
⁵⁴Mn,Mn-54 : マンガン-54

59Fe,Fe-59 : 鉄-59 58Co,Co-58 : コバルト-58 60Co,Co-60 : コバルト-60 65Zn,Zn-65 : 亜鉛-65 85Kr,Kr-85 : クリプトン-85

90 Sr, Sr-90 : ストロンチウム-90 95 Zr, Zr-95 : ジルコニウム-95 95 Nb, Nb-95 : ニオブ-95

¹⁰³Ru,Ru-103 : ルテニウム-103 ¹⁰⁶Ru,Ru-106 : ルテニウム-106 ¹²⁵Sb,Sb-125 : アンチモン-125 ¹²⁹I,I-129 : ヨウ素-129

131 I,I-131 : ヨウ素-131
134 Cs,Cs-134 : セシウム-134
137 Cs,Cs-137 : セシウム-137
140 Ba,Ba-140 : バリウム-140
140 La,La-140 : ランタン-140
144 Ce,Ce-144 : セリウム-144
154 Eu,Eu-154 : ユウロピウム-154
214 Bi,Bi-214 : ビスマス-214

²²⁸Ac,Ac-228 : アクチニウム-228 U : ウラン

²³⁴U,U-234 : ウラン-234 ²³⁵U,U-235 : ウラン-235 ²³⁸U,U-238 : ウラン-238

 $^{239+240}$ Pu,Pu- $^{239+240}$: プルトニウム- $^{239+240}$

²⁴¹Pu,Pu-241 : プルトニウム-241 ²⁴¹Am,Am-241 : アメリシウム-241 ²⁴⁴Cm,Cm-244 : キュリウム-244

 $Pu(\alpha)$: アルファ線を放出するプルトニウム $Am(\alpha)$: アルファ線を放出するアメリシウム $Cm(\alpha)$: アルファ線を放出するキュリウム

F : フッ素

1. 青森県実施分測定結果

(1)空間放射線量率測定結果

①モニタリングステーションによる空間放射線量率(NaI)測定結果

(単位:nGy/h)

測定局	測定月	平均	最大	最小	標準偏差	平常の変 動幅を外 れた時間 数	平常の変真 れた原因。 (単位:	と時間数	平常の 変動幅	過去の 測定値 の範囲	過去の 同一四 半期の 測定値	備考
						(単位: 時間)	施設起因	降雨等		702	の範囲	
	10月	25	46	22	2.9	4	0	4				
尾駮	11月	25	57	21	4.8	19	0	19	4~40	6~141	11~141	
上 以	12月	26	73	18	7.7	37	0	37	(22 ± 18)	0 - 141	(25)	
	第3四半期	25	73	18	5.5	60	0	60				
	10月	24	49	22	2.7	7	0	7				
千歳平	11月	25	49	22	3.5	15	0	15	9~37	8~88	13~76	
1 /// /	12月	25	57	16	6.6	41	0	41	(23 ± 14)	0 -00	(25)	
	第3四半期	25	57	16	4.6	63	0	63				
	10月	22	43	20	2.8	13	0	13				
平沼	11月	22	57	20	4.0	24	0	24	10~32	14~67	16~67	
T 10	12月	23	62	15	6.9	66	0	66	(21 ± 11)	14 -01	(23)	
	第3四半期	22	62	15	4.9	103	0	103				
	10月	23	42	21	3.2	3	0	3				
泊	11月	23	63	20	4.1	6	0	6	2~40	9~130	15~130	
111	12月	25	83	17	7.7	35	0	35	(21 ± 19)	3 - 150	(24)	
	第3四半期	23	83	17	5.5	44	0	44				
	10月	23	38	22	2.2	4	0	4				
吹 越	11月	24	50	22	3.3	21	0	21	10~34	10~93	14~93	
	12月	25	46	20	4.8	55	0	55	(22 ± 12)	10 55	(24)	
	第3四半期	24	50	20	3.6	80	0	80				
	10月	28	52	25	2.4	2	0	2				
比 較 対 照	11月	29	50	26	3.2	11	0	11	11~41	10~96	17~81	
(青森)	12月	29	56	23	5.0	27	0	27	(26 ± 15)	10 - 90	(29)	
	第3四半期	29	56	23	3.7	40	0	40				

- ・測定値は1時間値。
- ・測定時間数は3箇月間で約2,200時間。
- ・測定値は3 MeVを超える高エネルギー成分を含まない。
- ・「平常の変動幅」は「過去の測定値」の「平均値±(標準偏差の3倍)」。
- ・「過去の測定値の範囲」は、平成23~27年度の測定値の「最小値~最大値」。 ただし、平沼局及び泊局については平成27年度の測定値の「最小値~最大値」。
- ・「過去の同一四半期の測定値の範囲」は「過去の測定値」のうち同一四半期の測定値の「最小値~最大値」。また、括弧内の数値は平均値。
- ・「施設起因」は、監視対象施設である原子燃料サイクル施設に起因するもの。
- ・「降雨等」に分類する要因としては、「降雨、降雪、雷雨、積雪等の気象要因及び地理・地形上の要因等の自然条件の変化」、「医療・産業に用いる放射性同位元素等の影響」、「国内外の他の原子力施設からの影響」などが挙げられる。
- 「施設起因」と「降雨等」の影響が同時に認められた場合は、その主たる原因に分類している。

(参考)モニタリングステーションによる空間放射線量率(電離箱)測定結果

(単位:nGy/h)

測定局	測定月	平均	最大	最小	標準偏差	備考
	10月	62	80	59	2.7	
	11月	62	90	57	4.3	
尾 駮	12月	63	105	56	6.8	
	第3四半期	62	105	56	4.9	
	10月	68	90	64	2.6	
千歳平	11月	68	89	64	3.2	
成十	12月	68	98	60	6.0	
	第3四半期	68	98	60	4.2	
	10月	63	83	60	2.6	
平沼	11月	63	96	60	3.7	
十一個	12月	64	99	57	6.2	
	第3四半期	63	99	57	4.5	
	10月	61	78	57	3.0	
泊	11月	61	96	57	3.8	
10	12月	63	116	55	7.0	
	第3四半期	62	116	55	5.1	
吹越	10月	62	75	59	2.1	
	11月	62	86	59	3.0	
	12月	64	82	58	4.4	
	第3四半期	63	86	58	3.4	

[・]測定値は1時間値。

[・]測定値は3 MeVを超える高エネルギー成分を含む。

②モニタリングポストによる空間放射線量率(NaI)測定結果

測定局	測定月	平均 最	最大	最小	標準偏差	平常の変 動幅を外 れた時間 数 単位: 時間)	平常の変態 れた原因。 (単位:	と時間数	平常の 変動幅	過去の 測定値 の範囲	過去の 同一四 半期の 測定値 の範囲	備考
							施設起因	降雨等				
横浜町	10月	23	47	21	2.7	12	0	12		14~95	18~95 (24)	
	11月	23	51	21	3.0	14	0	14	13~33			
役 場	12月	24	48	20	4.9	56	0	56	(23 ± 10)			
	第3四半期	23	51	20	3.7	82	0	82				
	10月	33	53	31	2.1	7	0	7				
野辺地	11月	33	49	30	2.1	9	0	9	23~41	24~83	27~77 (33)	
五处地	12月	34	54	30	4.1	62	0	62	(32 ± 9)	24 -03		
	第3四半期	33	54	30	3.0	78	0	78				
	10月	22	38	20	2.2	5	0	5		9~85	13~85 (23)	
砂子又	11月	22	40	20	2.6	6	0	6	8~34			
	12月	24	93	18	8.3	59	0	59	(21 ± 13)	<i>y</i> 00		
	第3四半期	22	93	18	5.3	70	0	70				
	10月	21	43	19	3.0	17	0	17			14~76 (20)	
東北町 役 場	11月	22	50	18	3.6	22	0	22	7~31	11~86		
	12月	22	51	18	4.8	52	0	52	(19 ± 12)	11 00		
	第3四半期	22	51	18	3.9	91	0	91				
	10月	21	43	18	2.9	23	0	23				
東北分庁舎	11月	22	48	19	3.2	18	0	18	8~30	10~86	14~63 (21)	
	12月	22	51	18	5.0	55	0	55	(19 ± 11)	10 00		
	第3四半期	22	51	18	3.8	96	0	96				
三沢市役所	10月	22	37	19	2.6	17	0	17			17~63 (22)	
	11月	22	41	19	2.8	18	0	18	11~31	13~71		
	12月	22	48	19	3.6	28	0	28	(21 ± 10)	10 11		
	第3四半期	22	48	19	3.1	63	0	63				

- ・測定値は1時間値。
- ・測定時間数は3箇月間で約2,200時間。
- ・測定値は3 MeVを超える高エネルギー成分を含まない。
- ・「平常の変動幅」は「過去の測定値」の「平均値±(標準偏差の3倍)」。
- ・「過去の測定値の範囲」は、平成23~27年度の測定値の「最小値~最大値」。 ただし、野辺地局及び三沢市役所局については平成24~27年度の測定値の「最小値~最大値」。
- ・「過去の同一四半期の測定値の範囲」は「過去の測定値」のうち同一四半期の測定値の「最小値~最大値」。また、括弧内の数値は平均値。
- ・「施設起因」は、監視対象施設である原子燃料サイクル施設に起因するもの。
- ・「降雨等」に分類する要因としては、「降雨、降雪、雷雨、積雪等の気象要因及び地理・地形上の要因等の自然条件の変化」、 「医療・産業に用いる放射性同位元素等の影響」、「国内外の他の原子力施設からの影響」などが挙げられる。
- ・「施設起因」と「降雨等」の影響が同時に認められた場合は、その主たる原因に分類している。

③モニタリングカーによる空間放射線量率(NaI)測定結果

ア 定点測定

	測定地点	測 定 年月日	測定値 (nGy/h)	積雪深 (cm)	備 考
	石 川	H28.10.17	17	0	
	出 戸	n,	15	0	
	老 部 川	H28.12.12	13	11	
	尾	H28.12.20	17	0	
	沖 付	H28.12.12	14	7	
	新 納 屋	H28.12.20	13	4	
	新 栄	ıı	17	0	
	市柳沼東畔	H28.11.24	17	0	
六ケ所村	八 森	H28.12.12	15	20	
7 7 DI 113	六原	ıı	13	29	
	笹崎	ıı	19	16	
	千 歳 平	ıı	17	15	
	豊原	"	15	13	
	千 樽	ıı	16	5	
	尾駮沼南畔	ıı	19	14	
	弥 栄 平	ıı	19	12	
	清掃センター	ıı	16	5	
	富ノ沢	II.	17	13	
横浜町	第一明神平	H28.11.30	19	3	
	第二明神平	II.	14	1	
	はまなす公園	H28.12.12	13	15	
野辺地町	上目ノ越	II.	16	6	
野见地門	北 砂 沼	H28.11.22	13	0	
青森市	比 較 対 照 (青 森 市)	"	21	0	

[・]測定値は10分値。

イ 走行測定

走行ルート	測定年月日	測定値の範囲 (nGy/h)	備考
ルートA(千歳~平沼)	H28.11.24	14 ~ 22	
ルートB(平沼~石川)	H28.10.17	13 ~ 21	
ルートC(猿子沢〜新納屋)	H28.12.12	13 ~ 23	
ルートD(尾駮~中吹越)	H28.12.20	13 ~ 22	
ルートE(中吹越〜目ノ越)	H28.11.30	14 ~ 19	
ルートF(目/越~室/久保)	"	15 ~ 20	
ルートG(二又~上弥栄)	H28.12.12	16 ~ 19	
ルートH(森の踏切~沖付)	"	16 ~ 24	
ルートI(弥栄平~千歳)	11	13 ~ 17	

[・]測定値は500 m毎の平均値。

[・]降雨雪のない状況で測定。

[・]降雨雪のない状況で測定。

(2) 積算線量測定結果(RPLD)

ì	則 定 地	点	測 定 期 間(日数)	3 箇 月 積算線量 (μ Gy/91日)	平常の変動幅 (μ Gy/91目)	備考
	尾	駮	H28. 9.28~H28.12.27 (90)	94	75 ~ 101	
	千 :	歳 平	II.	94	78 ~ 102	
	平	沼	n.	91	86 ~ 96	
		泊	n.	94	84 ~ 96	
	出	戸	JJ	84	70 ~ 88	
4 m ++	老	部川	n.	89	_ *	
六ケ所村	富	ノ 沢	n	100	$76 \sim 107$	
	二	又	n.	94	78 ~ 99	
	むつ小川。	原石油備蓄	n.	94	75 ~ 99	
	室ノ	久 保	n.	94	72 ~ 100	
	六	原	n	101	85 ~ 108	
	倉	内	n.	92	79 ~ 98	
	吹	越	II	90	77 ~ 95	
横浜町	明	神 平	IJ	109	77 ~ 119	
	横浜	町 役 場	IJ.	97	92 ~ 106	
野辺地町	有	戸	II .	104	84 ~ 110	
野 72 地 町	野	辺 地	IJ.	107	99 ~ 112	
東通村	白	糠	II	95	82 ~ 105	
	西(東北	公 園 分 庁 舎)	II	85	75 ~ 94	
東北町	水	喰	y,	93	76 ~ 98	
宋 化 門	淋	代	n,	99	$75 \sim 105$	
	東北	町 役 場	y,	92	86 ~ 96	
三沢市	三沢	市役所	II	104	93 ~ 112	
青森市	比較対照	(青森市)	II	103	83 ~ 110	

- ・測定値は宇宙線の一部及び自己照射の線量を含む。
- ・「3箇月積算線量」は測定期間の測定値を91日当たりに換算し整数で示した値。
- ・「平常の変動幅」は平成23~27年度の3箇月積算線量の測定値の「最小値~最大値」。 ただし、平沼及び泊については平成27年度、野辺地については平成24~27年度の3箇月積算線量測定値の「最小値~最大値」。

^{※:} 老部川については、平成28年度第2四半期の測定期間中に測定場所を移動した。平常の変動幅については平成28年度第3四半期から新たにデータの蓄積を行い、1年間以上のデータが蓄積された時点で平常の変動幅として用いる。

(3) 大気浮遊じん中の全 α 及び全 β 放射能測定結果

ジル中の全α及び全β	放射能測	定結果					(単位:m	nBq/m³)
垃 版 期 閏	 		全 α			全 β		備考
1水 収 朔 旧	伊奴	平均	最大	最小	平均	最大	最小	川 つ
H28.10. 3~H28.10.31	4	0.060	0.087	0.036	0.91	1.1	0.64	
H28.10.31~H28.11.28	4	0.072	0.085	0.051	0.82	1.2	0.57	
H28.11.28~H29. 1. 2	5	0.068	0.094	0.040	0.96	1.1	0.85	
第3四半期	13	0.067	0.094	0.036	0.92	1.2	0.57	
H28.10. 3~H28.10.31	4	0.062	0.077	0.045	0.89	1.1	0.63	
H28.10.31~H28.11.28	4	0.054	0.069	0.043	0.84	1.1	0.58	
H28.11.28~H29. 1. 2	5	0.061	0.070	0.047	0.92	1.1	0.75	
第3四半期	13	0.059	0.077	0.043	0.89	1.1	0.58	
H28.10. 3~H28.10.31	4	0.063	0.11	0.040	0.87	1.0	0.59	
H28.10.31~H28.11.28	4	0.062	0.078	0.050	0.81	1.1	0.61	
H28.11.28~H29. 1. 2	5	0.060	0.081	0.046	0.94	1.1	0.71	
第 3 四 半 期	13	0.062	0.11	0.040	0.88	1.1	0.59	
H28.10. 3~H28.10.31	4	0.056	0.069	0.044	0.89	1.0	0.62	
H28.10.31~H28.11.28	4	0.047	0.061	0.035	0.80	1.2	0.52	
H28.11.28~H29. 1. 2	5	0.048	0.089	0.026	0.89	1.2	0.68	
第 3 四 半 期	13	0.050	0.089	0.026	0.86	1.2	0.52	
H28.10. 3~H28.10.31	4	0.052	0.077	0.029	0.91	1.1	0.59	
H28.10.31~H28.11.28	4	0.058	0.083	0.042	0.88	1.3	0.61	
H28.11.28~H29. 1. 2	5	0.053	0.082	0.024	0.99	1.3	0.83	
第 3 四 半 期	13	0.054	0.083	0.024	0.93	1.3	0.59	
H28.10. 3~H28.10.31	4	0.064	0.10	0.038	0.93	1.1	0.60	
H28.10.31~H28.11.28	4	0.059	0.075	0.045	0.90	1.2	0.63	
H28.11.28~H29. 1. 2	5	0.060	0.098	0.043	1.0	1.2	0.82	
第 3 四 半 期	13	0.061	0.10	0.038	0.95	1.2	0.60	
	採取期間 H28.10.3~H28.10.31 H28.10.31~H28.11.28 H28.11.28~H29.1.2 第3四半期 H28.10.31~H28.11.28 H28.11.28~H29.1.2 第3四半期 H28.10.3~H28.10.31 H28.10.3~H28.10.31 H28.10.31~H28.11.28 H28.11.28~H29.1.2 第3四半期 H28.10.3~H28.10.31 H28.10.3~H28.10.31 H28.10.3~H28.10.31 H28.10.3~H28.10.31 H28.10.31~H28.11.28 H28.11.28~H29.1.2 第3四半期 H28.10.3~H28.10.31 H28.10.3~H28.10.31 H28.10.3~H28.10.31 H28.10.3~H28.10.31 H28.10.3~H28.10.31 H28.10.3~H28.10.31 H28.10.3~H28.10.31	採取期間 検体数 H28.10.3~H28.10.31 4 H28.10.31~H28.11.28 4 H28.11.28~H29.1.2 5 第3四半期 13 H28.10.3~H28.10.31 4 H28.10.31~H28.11.28 4 H28.11.28~H29.1.2 5 第3四半期 13 H28.10.3~H28.10.31 4 H28.10.31~H28.11.28 4 H28.11.28~H29.1.2 5 第3四半期 13 H28.10.3~H28.10.31 4 H28.11.28~H29.1.2 5 第3四半期 13 H28.10.3~H28.10.31 4 H28.10.31~H28.11.28 4 H28.11.28~H29.1.2 5 第3四半期 13 H28.10.3~H28.10.31 4 H28.11.28~H29.1.2 5 第3四半期 13 H28.10.3~H28.10.31 4 H28.10.31~H28.11.28 4 H28.11.28~H29.1.2 5 第3四半期 13 H28.10.3~H28.10.31 4 H28.10.31~H28.11.28 4 H28.11.28~H29.1.2 5	平均	採取期間 操体数	接換数 接体数 上来物 最大 最小 日28.10.3~H28.10.31 4 0.060 0.087 0.036 H28.10.28~H29.1.28 4 0.072 0.085 0.051 H28.11.28~H29.1.2 5 0.068 0.094 0.040 第 3 四 半 期 13 0.067 0.094 0.036 H28.10.31~H28.11.28 4 0.062 0.077 0.045 H28.10.31~H28.11.28 4 0.054 0.069 0.043 H28.11.28~H29.1.2 5 0.061 0.070 0.047 第 3 四 半 期 13 0.059 0.077 0.043 H28.10.31~H28.11.28 4 0.063 0.11 0.040 H28.10.31~H28.11.28 4 0.062 0.078 0.050 H28.11.28~H29.1.2 5 0.060 0.081 0.046 第 3 四 半 期 13 0.062 0.11 0.040 H28.10.31~H28.10.31 4 0.056 0.069 0.044 H28.10.31~H28.11.28 4 0.047 0.061 0.035 H28.11.28~H29.1.2 5 0.048 0.089 0.026 第 3 四 半 期 13 0.050 0.089 0.026 第 3 四 半 期 13 0.050 0.089 0.026 H28.10.31~H28.10.31 4 0.052 0.077 0.029 H28.10.31~H28.11.28 4 0.058 0.083 0.042 H28.11.28~H29.1.2 5 0.053 0.082 0.024 H28.11.28~H29.1.2 5 0.053 0.082 0.024 第 3 四 半 期 13 0.054 0.083 0.042 H28.10.31~H28.10.31 4 0.054 0.083 0.024 H28.10.31~H28.10.31 4 0.064 0.10 0.038 H28.10.31~H28.11.28 4 0.069 0.075 0.045 H28.11.28~H29.1.2 5 0.060 0.098 0.043 H28.10.31~H28.11.28 4 0.069 0.075 0.045 H28.11.28~H29.1.2 5 0.060 0.098 0.043 H28.11.28 0.060 0.098 0.043 H28.11.28 0.060	採取期間 検体数 全 α 平均 最大 最小 平均 日本 日本 日本 日本 日本 日本 日本 日	採取期間 検体数	接取期間 検体数 平均 最大 最小 平均 最大 最小 日28.10.31~H28.11.28 4 0.060 0.087 0.086 0.91 1.1 0.64 H28.10.31~H28.11.28 4 0.072 0.085 0.051 0.82 1.2 0.57 H28.11.28~H29.1.2 5 0.068 0.094 0.040 0.96 1.1 0.85 第 3 四 半期 13 0.067 0.094 0.036 0.92 1.2 0.57 H28.11.28~H29.1.2 5 0.068 0.094 0.040 0.96 1.1 0.85 H28.11.28~H29.1.2 5 0.068 0.094 0.036 0.92 1.2 0.57 H28.10.31~H28.11.28 4 0.054 0.069 0.043 0.84 1.1 0.58 H28.11.28~H29.1.2 5 0.061 0.070 0.047 0.92 1.1 0.75 第 3 四 半期 13 0.059 0.077 0.043 0.89 1.1 0.58 H28.10.31~H28.10.31 4 0.063 0.11 0.040 0.87 1.0 0.59 H28.10.31~H28.11.28 4 0.062 0.078 0.050 0.81 1.1 0.61 H28.11.28~H29.1.2 5 0.060 0.081 0.046 0.94 1.1 0.71 第 3 四 半期 13 0.062 0.11 0.040 0.87 1.0 0.59 H28.10.31~H28.11.28 4 0.062 0.078 0.050 0.81 1.1 0.71 第 3 四 半期 13 0.062 0.11 0.040 0.88 1.1 0.71 第 3 四 半期 13 0.062 0.11 0.040 0.88 1.1 0.59 H28.10.31~H28.11.28 4 0.067 0.061 0.035 0.80 1.2 0.52 H28.10.31~H28.11.28 4 0.047 0.061 0.035 0.80 1.2 0.52 H28.11.28~H29.1.2 5 0.048 0.089 0.026 0.89 1.2 0.68 第 3 四 半期 13 0.050 0.089 0.026 0.86 1.2 0.52 H28.10.31~H28.11.28 4 0.052 0.077 0.029 0.91 1.1 0.59 H28.10.31~H28.11.28 4 0.052 0.077 0.029 0.91 1.1 0.59 H28.10.31~H28.11.28 4 0.058 0.083 0.042 0.88 1.3 0.61 H28.11.28~H29.1.2 5 0.053 0.082 0.024 0.99 1.3 0.83 第 3 四 半期 13 0.054 0.083 0.042 0.88 1.3 0.61 H28.11.28~H29.1.2 5 0.053 0.082 0.024 0.99 1.3 0.83 第 3 四 半期 13 0.054 0.083 0.024 0.93 1.3 0.59 H28.10.31~H28.11.28 4 0.069 0.075 0.045 0.90 1.2 0.63

^{・168}時間集じん終了後72時間放置、1時間測定。

[・]平均値の算出においては測定値に検出限界以下のものが含まれる場合、その時の検出限界値を測定値として算出し 平均値に「<」を付ける。すべての測定値が検出限界以下の場合、平均値も検出限界以下とし「*」と表示する。

(4)大気中の気体状β放射能測定結果(クリプトン-85換算)

(単位:kBq/m³)

						(参 考	;)		
測定局	測定月	平均	最大	最 小	平常の変動幅	定量下限値以上となった時間数 (うち、平常の変動幅を上回った時間数)	アクティブ 試験開始前 の測定値の 範囲	備	考
	10月	ND	ND	ND		0 (0)			
尾 駮	11月	ND	ND	ND	ND~9	0 (0)	NID		
上 版	12月	ND	ND	ND	ND∼9	0 (0)	ND		
	第3四半期	ND	ND	ND		0 (0)			
	10月	ND	ND	ND		0 (0)			
千歳平	11月	ND	ND	ND	ND~4	0 (0)	ND		
	12月	ND	ND	ND	ND 4	0 (0)	ND		
	第3四半期	ND	ND	ND		0 (0)			
	10月	ND	ND	ND		0 (0)			
平沼	11月	ND	ND	ND	ND	0 (0)	ND		
7 10	12月	ND	ND	ND	ND	0 (0)	ND		
	第3四半期	ND	ND	ND		0 (0)			
	10月	ND	ND	ND		0 (0)			
泊	11月	ND	ND	ND	ND∼2	0 (0)	ND		
111	12月	ND	ND	ND	ND -Z	0 (0)	ND		
	第3四半期	ND	ND	ND		0 (0)			
	10月	ND	ND	ND		0 (0)			
吹越	11月	ND	ND	ND	ND~11	0 (0)	ND		
	12月	ND	ND	ND	ND -11	0 (0)	ND		
	第3四半期	ND	ND	ND		0 (0)			
	10月	ND	ND	ND		0 (0)			
比較対照	11月	ND	ND	ND	ND	0 (0)	ND		
(青森)	12月	ND	ND	ND	110	0 (0)	1112		
	第3四半期	ND	ND	ND		0 (0)			

[・]測定値は1時間値。

[・]測定時間数は3箇月間で約2,200時間。

[・]平均値の算出においては、測定値に定量下限値未満のものが含まれる場合、定量下限値を測定値として算出し、 平均値に「<」を付ける。また、すべての測定値が定量下限値未満の場合、平均値も定量下限値未満とし、「ND」 と表示する。

^{・「}平常の変動幅」は、平成6~27年度の測定値の「最小値~最大値」。

^{・「}アクティブ試験開始前の測定値の範囲」は、平成6~17年度の測定値の「最小値~最大値」。

(単位:mBq/m³)

測定局	採取期間	検体数	平 均	最大	最 小	備 考
	H28.10. 3 ∼ H28.10.31	4	ND	ND	ND	
	H28.10.31 ∼ H28.11.28	4	ND	ND	ND	
尾 駮	H28.11.28 ∼ H29. 1. 4	5	ND	ND	ND	
	第 3 四 半 期	13	ND	ND	ND	
	H28.10. 3 ∼ H28.10.31	4	ND	ND	ND	
千歳 平	H28.10.31 ∼ H28.11.28	4	ND	ND	ND	
	H28.11.28 ∼ H29. 1. 4	5	ND	ND	ND	
	第 3 四 半 期	13	ND	ND	ND	
	H28.10. 3 ∼ H28.10.31	4	ND	ND	ND	
平沼	H28.10.31 ∼ H28.11.28	4	ND	ND	ND	
T 10	H28.11.28 ∼ H29. 1. 4	5	ND	ND	ND	
	第 3 四 半 期	13	ND	ND	ND	
	H28.10. 3 ∼ H28.10.31	4	ND	ND	ND	
泊	H28.10.31 ∼ H28.11.28	4	ND	ND	ND	
111	H28.11.28 ∼ H29. 1. 4	5	ND	ND	ND	
	第 3 四 半 期	13	ND	ND	ND	
	H28.10. 3 ∼ H28.10.31	4	ND	ND	ND	
吹越	H28.10.31 ∼ H28.11.28	4	ND	ND	ND	
	H28.11.28 ∼ H29. 1. 4	5	ND	ND	ND	
	第 3 四 半 期	13	ND	ND	ND	
	H28.10. 3 ∼ H28.10.31	4	ND	ND	ND	
比較対照	H28.10.31 ∼ H28.11.28	4	ND	ND	ND	
(青森)	H28.11.28 ∼ H29. 1. 4	5	ND	ND	ND	
	第 3 四 半 期	13	ND	ND	ND	

[・]測定値は試料採取日に補正した値。

[・]平均値の算出においては、測定値に定量下限値未満のものが含まれる場合、定量下限値を測定値として 算出し、平均値に「<」を付ける。また、すべての測定値が定量下限値未満の場合、平均値も定量下限値 未満とし、「ND」と表示する。

(6)環境試料中の放射能測定結果

(0)01		VI 1	Ť		14/_/	111	尼側疋結果	· 				機	器	分	析			
弒	料	名		採]	取 地	点	採取年月日	単位	⁵⁴ Mn	⁶⁰ Co	¹⁰⁶ Ru	134Cs	¹³⁷ Cs	¹⁴⁴ Ce	⁷ Be	⁴⁰ K	²¹⁴ Bi	²²⁸ Ac
			1	尾		駮	H28.10. 3~ H29. 1. 2		ND	ND	ND	ND	ND	ND	3.0	ND	_	
				千	歳	平	H28.10. 3∼ H29. 1. 2		ND	ND	ND	ND	ND	ND	3.0	ND	_	_
	~ W		- 1	平		沼	H28.10. 3∼ H29. 1. 2	. 2	ND	ND	ND	ND	ND	ND	3.0	ND	_	_
大 気	浮 班	: L /	ับ		泊		H28.10. 3∼ H29. 1. 2	mBq/m ³	ND	ND	ND	ND	ND	ND	3.0	ND	_	_
			;	横	浜	町	H28.10.3∼ H29.1.2		ND	ND	ND	ND	ND	ND	3.0	ND	_	_
				比 (青	竣対 森 ī	照	H28.10.3~ H29.1.2		ND	ND	ND	ND	ND	ND	3.1	ND	_	_
							H28. 9.30∼ H28.10.31		_	_	_	_	_	_	_	_	_	_
雨		7.	k	千	歳	平	H28.10.31~ H28.11.30	Bq∕ℓ	_	_	_	_	_	_	_	_	_	_
							H28.11.30∼ H28.12.28		_	_	_	_	_	_	_	_	_	_
							H28. 9.30∼ H28.10.31		ND	ND	ND	ND	ND	ND	130	ND	_	_
降	下	牛	勿	千	歳	平	H28.10.31~ H28.11.30	Bq/m ²	ND	ND	ND	ND	ND	ND	270	ND	_	_
							H28.11.30~ H28.12.28		ND	ND	ND	ND	ND	ND	350	ND	_	_
河	Л	7	k	老上	部	川流	H28.10. 6		ND	ND	ND	ND	ND	ND	ND	ND	_	_
1")	711	/.	1	老 下	部	川流	H28.10. 6		ND	ND	ND	ND	ND	ND	ND	ND	_	_
			,	尾	駮	沼	H28.10.19		ND	ND	ND	ND	ND	ND	ND	-	_	_
湖	沼	7	k	尾	駮	沼	H28.12.14	mBq/0 トリチウム	ND	ND	ND	ND	ND	ND	ND	_	_	_
1191	111	/-	- 1	鷹	架	沼	H28.10.26	については Bq/ℓ	ND	ND	ND	ND	ND	ND	ND	_	_	_
				小丿	川原	湖	H28.10.28		ND	ND	ND	ND	ND	ND	ND	550	_	_
水	道	7.	ĸ,	尾		駮	H28.10.13		ND	ND	ND	ND	ND	ND	ND	ND	_	
井	戸	7.	ĸ,			駮	H28.10.13		ND	ND	ND	ND	ND	ND	ND	160	_	_
河	底	_	+1			川流	H28.10. 6		ND	ND	ND	ND	ND	ND	ND	74	ND	ND
			-	老下	部	川流	H28.10. 6		ND	ND	ND	ND	ND	ND	ND	160	ND	ND
			,	尾	駮	沼	H28.10.19	Bq/kg乾	ND	ND	ND	ND	4	ND	ND	270	ND	ND
湖	底	Ξ	t.	鷹	架	沼	H28.10.26		ND	ND	ND	ND	9	ND	ND	230	ND	ND
				小丿	川原	湖	H28.10.28		ND	ND	ND	ND	5	ND	ND	180	ND	ND
				_		又	H28.10.11		ND	ND	ND	ND	ND	ND	ND	51	_	_
牛 乳	(原	乳	- 1	庄		内	H28.10.11	Bq∕ℓ	ND	ND	ND	ND	ND	ND	ND	50	_	_
. ,,			- 1	横	浜	町	H28.10.11		ND	ND	ND	ND	ND	ND	ND	51	_	_
			,	東	北	町	H28.10.13		ND	ND	ND	ND	ND	ND	ND	47	_	_

		放	射 化	学 分	析			備考
³ H	¹⁴ C	⁹⁰ Sr	¹²⁹ I	²³⁹⁺²⁴⁰ Pu	²⁴¹ Am	²⁴⁴ Cm	U	備 考
_	_	ND	_	ND	_	_	ND	
_	_	ND	_	ND	_	_	_	
_	_	ND	_	ND	_	_	_	
_	_	ND	_	ND	_	_	_	
_	_	ND	_	ND	_	_	-	
_	_	ND	_	ND	_	_	ND	
ND	_	_	_	_	_	_	_	
ND	_	_	_	_	_	_	_	
ND	_	_	_	_	-	_	-	
_	_	_	_	_	-	_	-	
_	_	_	_	_	_	_	_	
_	_	_	_	_	_	_	I	
ND	_	_	_	_	-	_	-	
ND	_	_	_	_	_	_	I	
ND	_	ND	_	_	_	_	_	塩分 17
ND	_	ND	_	_	_	_	_	塩分 17
ND	_	_	_	_	-	_	_	塩分 11
ND	_	_	_	_	-	_	-	(海水の塩分は約35)
ND	_	ND	_	_	_	_	-	
ND	_	ND	_	_	_	_	_	
_	_	_	_	_	_	_	_	
_	_	_	_	_	_	_	_	
_	_	ND	_	0.82	0.33	ND	120	
_	_	ND	_	0.55	0.25	ND	73	
_	_	ND	_	0.23	0.13	ND	_	
_	_	ND	_	_	_	_	ND	
_	_	ND	_	_	_	_	ND	
_	_	ND	_	_	_	_	_	
_	_	ND	_	_		_	_	

-	4	aled	h	+177	T- 11 -	松馬左口口	π 1-				機	器	分	析			
部	τ.	料	名	採.	取地点	採取年月日	単位	⁵⁴ Mn	⁶⁰ Co	¹⁰⁶ Ru	¹³⁴ Cs	¹³⁷ Cs	¹⁴⁴ Ce	⁷ Be	⁴⁰ K	²¹⁴ Bi	²²⁸ Ac
				二	又	H28. 9.20		ND	ND	ND	ND	ND	ND	ND	24	_	_
yle-t-			Ne	千	樽	H28.10.19		ND	ND	ND	ND	ND	ND	ND	23	_	_
精			米		辺地町	H28.10.10		ND	ND	ND	ND	ND	ND	ND	33	_	_
				比!	較対照 ・森市)	H28. 9.24	Bq/kg生 ¹⁴ Cに	_	_	_	_	_	_	_	_	_	_
ハ	ク	サ	· 1	出	戸	H28.11. 4	ついては 上:Bq/kg生 下:Bq/g炭素	ND	ND	ND	ND	ND	ND	ND	75	_	_
ダ	イ	コ	ン	出	戸	H28.10.26		ND	ND	ND	ND	ND	ND	ND	68	_	_
ナ	ガ	イ	モ	東	北 町	H28.11.29		ND	ND	ND	ND	ND	ND	ND	120	_	_
キ	ヤ	ベ	: ツ	横	浜 町	H28.11.10		ND	ND	ND	ND	ND	ND	ND	68	_	_
ワ	カ	サ	ギ	尾	駮 沼	H28.10.19		ND	ND	ND	ND	ND	ND	ND	110	_	_
シ		ジ	151	小	川原湖	H28.10.19	D /1 #-	ND	ND	ND	ND	ND	ND	ND	7	_	_
松			葉	尾	駮	H28.10.17	Bq/kg生	ND	ND	ND	ND	ND	ND	71	56	_	_
1/4				比!	較対照 森市)	H28.10.18		ND	ND	ND	ND	ND	ND	85	77	_	_
				放 付	出 口近	H28.10.12	mBq/ℓ	ND	ND	ND	ND	ND	ND	ND	_	_	_
海			水	放北地放	出 口 20 k m 点 出 口	H28.10.12	トリチウム については Bg/0	ND	ND	ND	ND	ND	ND	ND	_	_	_
					20 k m 点	H28.10.12	Dq/ ℓ	ND	ND	ND	ND	ND	ND	ND	_	_	_
				放付	出口近	H28.10.12		ND	ND	ND	ND	ND	ND	ND	230	ND	ND
海		底	土	放北地	出 口 20 k m 点	H28.10.12	Bq/kg乾	ND	ND	ND	ND	ND	ND	ND	170	ND	ND
				地放南地	点 出 口 20 k m 点	H28.10.12		ND	ND	ND	ND	ND	ND	ND	170	ND	ND
魚 (ヒ	ラ	類	六.	ケ所村 面海域	H28.10.18		ND	ND	ND	ND	ND	ND	ND	140	_	_
海 (:		藻 ン	類 ブ)	六 前i	ヶ所村 面海域	H28.10.28	Bq/kg生 トリチウム	ND	ND	ND	ND	ND	ND	ND	310	_	_
海 (ヲ	・ナ	— 藻 ゛イ	類	六	ヶ所村 面海域	H28.10.24	については 上:Bq/kg生 下:Bq/l	ND	ND	ND	ND	ND	ND	ND	230	_	_
				_	ヶ所 村 面海域	H28.10.21	, .pq/⊭	ND	ND	ND	ND	ND	ND	ND	28	_	_

 [・] Uは、²³⁴U、²³⁵U及び²³⁸Uの合計。
 ・ 機器分析によるγ線放出核種、³H及び⁹⁰Srの測定値は試料採取日に補正した値。
 ・ ヒラメ(六ヶ所村前面海域)は東通原子力発電所環境放射線等調査試料を兼ねる。

		放	射 化	学 分	析			備考
³ H	¹⁴ C	⁹⁰ Sr	¹²⁹ I	²³⁹⁺²⁴⁰ Pu	²⁴¹ Am	²⁴⁴ Cm	U	VHI TO
_	87 0.23	ND	_	ND	_	_	ND	
_	89 0.24	ND	_	ND	_	_	ND	
_	86 0.23	ND	_	ND	_	_	_	
_	87 0.23	_	_	_	_	_	_	
_	6 0.23	0.15	_	ND	_	_	ND	
_	6 0.23	0.15	_	ND	_	_	ND	
_	17 0.23	0.04	_	ND	_	_	_	
_	10 0.24	0.05	_	ND	_	_	_	
_	_	ND	_	ND	-	_	_	
_	_	ND	_	ND	1	_	_	
_	_	_	_	_	_	_	0.03	
_	_	_	_	_	I	_	0.02	
ND	_	ND	_	ND	-	_	_	
ND	_	ND	_	ND	_	_	_	
ND	_	ND	_	ND	_	_	_	
_	_	ND	_	0.51	0.21	ND	_	
_	_	ND	_	0.54	0.18	ND	_	
_	-	ND	_	0.29	0.10	ND	_	
ND ND	_	ND	_	ND	_	_	_	
_	_	ND	_	0.003	-	_	_	
_	-	0.05	_	ND	_	_	_	
_	_	ND	_	ND	_	_	_	

(7)大気中の水蒸気状トリチウム測定結果

		測	定值	大気中		ティブ 試験 定値の範囲	
測定地点	採取期間	大気中濃度 (mBq/m³)	水分中濃度 (Bq/0)	水分量 (g/m³)	大気中濃度 (mBq/m³)	水分中濃度 (Bq/0)	備考
	H28. 9.30 ∼ H28.10.31	ND	ND	7.7			
尾 駮	H28.10.31 ~ H28.11.30	ND	ND	4.7	ND	ND∼2	
	H28.11.30 ~ H28.12.28	ND	ND	4.0			
	H28. 9.30 ∼ H28.10.31	ND	ND	7.8			
横浜町	H28.10.31 ~ H28.11.30	ND	ND	4.8	ND	ND	
	H28.11.30 ~ H28.12.28	ND	ND	4.2			
	H28. 9.30 ∼ H28.10.31	ND	ND	7.7			
比 較 対 照 (青森市)	H28.10.31 ~ H28.11.30	ND	ND	5.0	ND	ND∼2	
	H28.11.30 ~ H28.12.28	ND	ND	4.2			

[・]測定値は試料採取日に補正した値。

^{・「}アクティブ試験開始前の測定値の範囲」は、尾駮については平成元~17年度の測定値の「最小値~最大値」。 横浜町及び比較対照(青森市)については平成2~17年度の測定値の「最小値~最大値」。

(8) 大気中の気体状フッ素測定結果

(単位:ppb)

測定局	測定月	平 均	最 大	最 小	備考
	10月	ND	ND	ND	
尾 駮	11月	ND	ND	ND	
尾 駮	12月	ND	ND	ND	
	第3四半期	ND	ND	ND	
	10月	ND	ND	ND	
比較対照	11月	ND	ND	ND	
(青森)	12月	ND	ND	ND	
	第3四半期	ND	ND	ND	

(9)環境試料中のフッ素測定結果

試	料	名	採取地点	採取年月日	単 位	測定値	備考
大		気	尾	H28.10.7~ H28.10.14	$\mu \text{ g/m}^3$	ND	
		~~	比 較 対 照 (青 森 市)	H28.10.7∼ H28.10.14	μg/ III	ND	
河	Ш	水	老部川上流	H28.10. 6		ND	
{PJ	<i>)</i> '	八	老部川下流	H28.10. 6		ND	
			尾 駮 沼	H28.10.19	mg/ϱ	0.6	塩分 17
湖	沼	水	尾 駮 沼	H28.12.14		0.6	塩分 17
			鷹架沼	H28.10.26		0.4	塩分 11 (海水の塩分は約35)
河	底	土	老部川上流	H28.10. 6		55	
15)	瓜	土	老部川下流	H28.10. 6	mg/kg乾	98	
湖	底	土	尾 駮 沼	H28.10.19	iiig/ Kg ΨΔ	180	
1147]		土	鷹架沼	H28.10.26		110	
牛乳	(百	. 剑)	二 又	H28.10.11	${ m mg}/{ m \ell}$	ND	
T 4L	()尔	、 † L /	庄 内	H28.10.11	1115/ &	ND	
精			二又	H28. 9.20	mg/kg生	ND	

^{・「}大気」の測定値は粒子状フッ素及び気体状フッ素の合計。

(10)気象観測結果

①風速·気温·湿度·降水量·積雪深

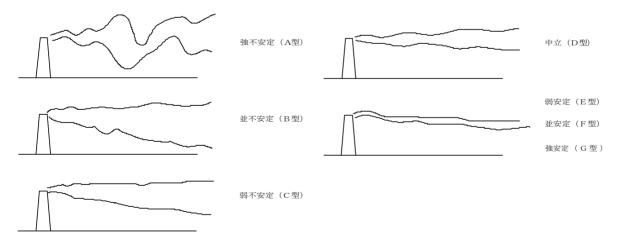
		風速(r	n/sec)		気 温(℃	C)	湿度	£(%)	降水量		積	雪深	(cm)	
測定局	測定月	平均	最大	平均	最高	最 低	平均	最小	(nm)	平均	最大	最小	過去 平均	の値 最大
	10月	3.0	12.2	12.2	22.9	0.8	73	39	107.5	0	0	0	0	0
尾 駮	11月	3.1	10.0	4.6	14.8	-3.5	73	43	86.5	0	9	0	0	21
庄 収	12月	3.2	11.0	1.7	13.3	-5.9	74	44	152.0	4	28	0	17	85
	第3四半期	3.1	12.2	6.2	22.9	-5.9	73	39	346.0	1	28	0	6	85
	10月	2.9	9.2	12.2	22.7	0.5	67	34	89.0	0	0	0	0	0
千歳平	11月	2.9	8.2	4.7	14.4	-3.1	72	33	70.0	0	2	0	1	40
	12月	3.1	9.0	1.6	12.2	-6.5	74	37	157.0	13	56	0	19	83
	第3四半期	3.0	9.2	6.2	22.7	-6.5	71	33	316.0	4	56	0	7	83
	10月	_	_	_	_	_	_	_	66.0	0	0	0	0	0
平 沼	11月	_	_	_	_	_	_	_	44.5	0	3	0	0	0
十 伯	12月	_	_	_	_	_	_	_	128.0	6	37	0	4	35
	第3四半期	_	_	_	_	_	_	_	238.5	2	37	0	1	35
	10月	_	_	_	_	_	_	_	89.0	0	0	0	0	0
泊	11月	_	_	_	_	_	_	_	71.0	0	4	0	0	0
行	12月	-	-	ı	-	ı	1	ı	182.5	2	33	0	3	25
	第3四半期	1	1	ı	1	1	1	l	342.5	1	33	0	1	25
	10月		1		1	1	-		73.5	0	0	0	0	0
吹越	11月	_	_	_	_	_	_	_	48.0	0	2	0	0	11
	12月	_	_	_	_	_	_	_	122.5	1	9	0	6	48
	第3四半期	_	_	_	_	_	_	_	244.0	0	9	0	2	48
	10月	_	_	_	_		_	_	101.0	0	0	0	0	0
比較	11月	_	_	_	_	_	_	_	57.5	0	6	0	0	8
対 照 (青森市)	12月	_	_	-	_	_	-	_	129.5	3	27	0	13	72
	第3四半期	_	_	I	-	_	-	_	288.0	1	27	0	5	72

[・]測定値は「地上気象観測指針(平成14年気象庁)」に基づく1時間値。

[・]積雪深における「過去の値」は、平成23~27年度の平均値及び最大値。

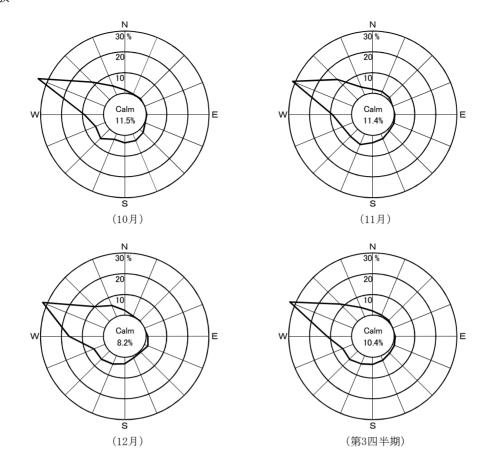
単位:時間(括弧内は%)

②大気安定度出現頻度表

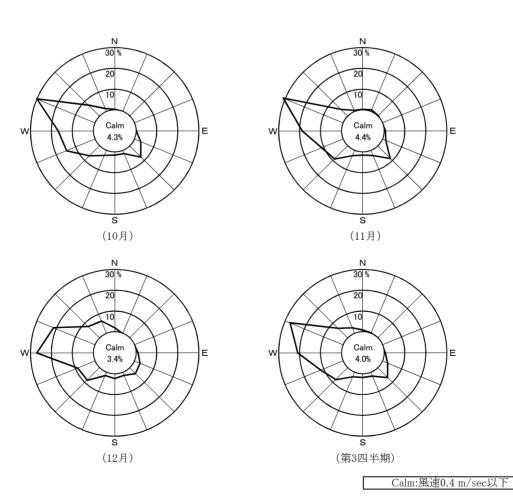

測定局	分類 測定月	А	A – B	В	B - C	С	C - D	D	Е	F	G	計	備考
	10月	6 (0.8)	22 (3.0)	42 (5.7)	8 (1.1)	31 (4.2)	16 (2.2)	409 (55.5)	17 (2.3)	20 (2.7)	166 (22.5)	737 (100)	
尾駮	11月	2 (0.3)	14 (1.9)	35 (4.9)	7 (1.0)	11 (1.5)	0.0)	477 (66.3)	20 (2.8)	14 (1.9)	140 (19.4)	720 (100)	
	12月	0.0)	5 (0.7)	24 (3.2)	11 (1.5)	20 (2.7)	12 (1.6)	509 (68.4)	20 (2.7)	21 (2.8)	122 (16.4)	744 (100)	
	第 3 四半期	8 (0.4)	41 (1.9)	101 (4.6)	26 (1.2)	62 (2.8)	28 (1.3)	1,395 (63.4)	57 (2.6)	55 (2.5)	428 (19.4)	2,201 (100)	
	10月	4 (0.5)	27 (3.7)	45 (6.1)	12 (1.6)	40 (5.4)	23 (3.1)	432 (58.5)	23 (3.1)	29 (3.9)	104 (14.1)	739 (100)	
千歳平	11月	0.0)	13 (1.8)	32 (4.4)	9 (1.3)	24 (3.3)	13 (1.8)	482 (66.9)	22 (3.1)	27 (3.8)	98 (13.6)	720 (100)	
1 //X T	12月	0.0)	5 (0.7)	16 (2.2)	10 (1.3)	33 (4.4)	26 (3.5)	529 (71.1)	21 (2.8)	35 (4.7)	69 (9.3)	744 (100)	
	第 3 四半期	4 (0.2)	45 (2.0)	93 (4.2)	31 (1.4)	97 (4.4)	62 (2.8)	1,443 (65.5)	66 (3.0)	91 (4.1)	271 (12.3)	2,203 (100)	

^{・「}発電用原子炉施設の安全解析に関する気象指針(平成13年3月 原子力安全委員会)」に基づく1時間値を用いて分類。

大気安定度分類表


Γ	風速(U)		日射量(T	`) kW/m ²		放射	収支量(Q) k'	W/m^2
	m/s	T≧0.60	0. 60 > T ≥ 0. 30	0.30>T ≥0.15	0. 15 > T	Q ≧ -0. 020	-0. 020 > Q ≧ -0. 040	-0. 040 > Q
Γ	U < 2	A	А-В	В	D	D	G	G
١	$2 \le U < 3$	A-B	В	С	D	D	E	F
ı	$3 \leqq U \! < 4$	В	B-C	С	D	D	D	E
ı	$4 \leq U < 6$	С	C-D	D	D	D	D	D
	6 ≦U	С	D	D	D	D	D	D

発電用原子炉施設の安全解析に関する気象指針(平成13年3月 原子力安全委員会)



大気安定度と煙の型との模式図

③ 風配図尾 駮

千歳平

2. 事業者実施分測定結果

(1)空間放射線量率測定結果

①モニタリングステーションによる空間放射線量率(NaI)測定結果

(単位:nGy/h)

測定局	測定力	目	平均	最大	最小	標準偏差	平常の変 動幅を外 れた時間 数(単位:	平常の変 れた原因 (単位:	と時間数	平常の 変動幅	過去の 測定値 の範囲	過去の 同一四 半期の	備考
							時間)	施設起因	降雨等		クノ車は「土」	測定値 の範囲	
	10 月		21	37	20	2.3	5	0	5				
老部川	11 月		22	43	19	3.4	21	0	21	6~32	8~114	11~114	
石即川	12 月		22	61	17	5.9	46	0	46	(19 ± 13)	0 -114	(21)	
	第3四半	·期	22	61	17	4.2	72	0	72				
	10 月		23	50	21	2.7	2	0	2				
二又	11 月		23	56	20	4.1	16	0	16	5~37	7∼133	12~133	
	12 月		24	51	18	5.9	37	0	37	(21 ± 16)	1 100	(23)	
	第3四半	·期	23	56	18	4.5	55	0	55				
	10 月		21	40	19	2.2	4	0	4				
室ノ久保	11 月		21	44	18	3.1	10	0	10	8~34	8 ∼ 73	14~73	
土/人体	12 月		22	47	16	5.4	35	0	35	(21 ± 13)	0 - 13	(23)	
	第3四半	·期	21	47	16	3.8	49	0	49				

- ・測定値は1時間値。
- ・測定時間数は3箇月間で約2,200時間。
- ・測定値は3 MeVを超える高エネルギー成分を含まない。
- ・「平常の変動幅」は、「過去の測定値」の「平均値±(標準偏差の3倍)」。
- ・「過去の測定値」の範囲は、平成23~27年度の測定値の「最小値~最大値」。
- ・「過去の同一四半期の測定値」の範囲は、「過去の測定値」のうち同一四半期の測定値の「最小値~最大値」。 また、括弧内の数値は平均値。
- 「施設起因」は、監視対象施設である原子燃料サイクル施設に起因するもの。
- ・「降雨等」に分類する要因としては、「降雨、降雪、雷雨、積雪等の気象要因及び地理・地形上の要因等の自然条件の変化」、「医療・産業に用いる放射性同位元素等の影響」、「国内外の他の原子力施設からの影響」などが挙げられる。
- ・「施設起因」と「降雨等」の影響が同時に認められた場合は、その主たる原因に分類している。

(参考)モニタリングステーションによる空間放射線量率(電離箱)測定結果

(単位:nGy/h)

測定局	測定月	平 均	最 大	最 小	標準偏差	備 考
	10 月	56	70	52	2.4	
老部川	11 月	56	77	53	3.5	
	12 月	57	97	52	6.1	
	第3四半期	56	97	52	4.3	
	10 月	56	79	53	2.7	
二又	11 月	56	86	52	4.1	
	12 月	57	84	51	6.0	
	第3四半期	56	86	51	4.5	
	10 月	53	70	50	2.3	
室ノ久保	11 月	54	72	50	3.1	
王/久休	12 月	54	81	49	5.5	
	第3四半期	54	81	49	4.0	

[・]測定値は1時間値。

[・]測定値は3 MeVを超える高エネルギー成分を含む。

(2)積算線量測定結果(RPLD)

測	定	地	点	測	定	期	間	(日数)	3箇月積算線量 (μ Gy/91 日)	平常 (_μ	名の変 Gy/9]	動幅 (日)	備	考
	老	部	Л	H28.	9.28	~H28	3.12.27	(90)	91	72	\sim	95		
	二		又			"			98	72	\sim	103		
	室	ノ 久	、保			11			92	72	\sim	102		
	石		JII			11			105	66	\sim	109		
	新		町			"			112	75	\sim	117		
	大	石	平			11			108	73	\sim	114		
六ヶ所村	富	1	沢			11			105	72	\sim	108		
	雲	雀	平			11			104	81	\sim	107		
	むつ	小川原石	油備蓄			11			96	72	\sim	99		
	千		樽			11			98	72	\sim	105		
	豊		原			11			95	70	\sim	109		
	千	歳	平			11			95	80	\sim	95		
	六		原			11			103	81	\sim	114		

- ・測定値は宇宙線の一部及び自己照射の線量を含む。
- ・「3箇月積算線量」は測定期間の測定値を91日当たりに換算し整数で示した値。
- ・「平常の変動幅」は平成23~27年度の3箇月積算線量の測定値の「最小値~最大値」。 ただし、千歳平については、平成26年7月~平成28年3月の3箇月積算線量の測定値の「最小値~最大値」。

(3)大気浮遊じん中の全 α 及び全 β 放射能測定結果

(単位:mBq/m³)

測定局	採取	期	間	検体数		全 α			全 β		備考
例足別	1木 収	、刑	[F]	快冲数	平 均	最 大	最 小	平 均	最 大	最 小	1 相 有
	H28.10. 3	3∼H28.	.10.31	4	0.062	0.084	0.039	0.56	0.67	0.34	
老 部 川	H28.10.3	1∼H28	.11.28	4	0.062	0.067	0.055	0.59	0.77	0.45	
14 pp ///	H28.11.2	8∼H29	. 1. 2	5	0.054	0.083	0.036	0.64	0.78	0.45	
	第 3	四半	期	13	0.059	0.084	0.036	0.60	0.78	0.34	
	H28.10. 3	3∼H28.	.10.31	4	0.089	0.14	0.046	0.52	0.66	0.28	
二 又	H28.10.3	1∼H28	.11.28	4	0.079	0.090	0.059	0.50	0.69	0.32	
	H28.11.2	8∼H29	. 1. 2	5	0.068	0.13	0.041	0.58	0.71	0.49	
	第 3	四半	期	13	0.078	0.14	0.041	0.54	0.71	0.28	
	H28.10. 3	3∼H28.	.10.31	4	0.051	0.079	0.029	0.61	0.73	0.44	
室ノ久保	H28.10.3	1∼H28	.11.28	4	0.057	0.068	0.047	0.60	0.90	0.41	
上 / 八 休	H28.11.2	8∼H29	. 1. 2	5	0.045	0.078	0.029	0.72	0.83	0.56	
	第 3	四半	期	13	0.051	0.079	0.029	0.65	0.90	0.41	

^{・168}時間集じん終了後72時間放置、1時間測定。

[・]平均値の算出においては測定値に検出限界以下のものが含まれる場合、そのときの検出限界値を測定値として算出し、平均値に「<」を付ける。すべての測定値が検出限界以下の場合、平均値も検出限界以下とし「*」と表示する。

							(参 考	(
測定局	測定	三月	平均	最大	最 小	平常の 変動幅	定量下限値以上 となった時間数 (うち、平常の変動幅 を上回った時間数	アクティブ試験 開始前の測定 値の範囲	備	考
	10	月	ND	ND	ND		0 (0)			
老部川	11	月	ND	ND	ND	ND∼3	0 (0)	ND		
名 部 川	12	月	ND	ND	ND	ND,~3	0 (0)	ND		
	第3四	半期	ND	ND	ND		0 (0)			
	10	月	ND	ND	ND		0 (0)			
二又	11	月	ND	ND	ND	ND~8	0 (0)	ND		
	12	月	ND	ND	ND	ND, 9	0 (0)	ND		
	第3四	半期	ND	ND	ND		0 (0)			
	10	月	ND	ND	ND		0 (0)			
室ノ久保	11	月	ND	ND	ND	ND~6	0 (0)	ND		
至ノ久休	12	月	ND	ND	ND	MD, 90	0 (0)	ND		
	第3四	半期	ND	ND	ND		0 (0)			

- ・測定値は1時間値。
- ・測定時間数は3箇月間で約2,200時間。
- ・平均値の算出においては、測定値に定量下限値未満のものが含まれる場合、定量下限値を測定値として算出 し、平均値に「<」を付ける。また、すべての測定値が定量下限値未満の場合、平均値も定量下限値未満とし、 「ND」と表示する。
- ・「平常の変動幅」は、平成6~27年度の測定値の「最小値~最大値」。
- ・「アクティブ試験開始前の測定値の範囲」は、平成6~17年度の測定値の「最小値~最大値」。

(5)大気中のヨウ素-131測定結果

(単位:mBq/m³)

測定地点	採取		期間	検体数	平 均	最 大	最 小	備考
	H28.10. 3	~	H28.10.31	4	ND	ND	ND	
老部川	H28.10.31	\sim	H28.11.28	4	ND	ND	ND	
老部川	H28.11.28	\sim	H29. 1. 4	5	ND	ND	ND	
	第 3	四	半期	13	ND	ND	ND	
	H28.10. 3	~	H28.10.31	4	ND	ND	ND	
二 又	H28.10.31	\sim	H28.11.28	4	ND	ND	ND	
	H28.11.28	~	H29. 1. 4	5	ND	ND	ND	
	第 3	四	半期	13	ND	ND	ND	
	H28.10.3	~	H28.10.31	4	ND	ND	ND	
室ノ久保	H28.10.31	\sim	H28.11.28	4	ND	ND	ND	
主/久保	H28.11.28	\sim	H29. 1. 4	5	ND	ND	ND	
	第 3	四	半期	13	ND	ND	ND	

[・]測定値は試料採取日に補正した値。

[・]平均値の算出においては、測定値に定量下限値未満のものが含まれる場合、定量下限値を測定値として算出し、平均値に「く」を付ける。全ての測定値が定量下限値未満の場合、平均値も定量下限値未満とし「ND」と表示する。

(6)環境試料中の放射能測定結果

3.6	lol			I==			L-		W 41.			機		器	分		析		
江	料	名		採	取	地	点	採取年月日	単 位	⁵⁴ Mn	⁶⁰ Co	¹⁰⁶ Ru	¹³⁴ Cs	¹³⁷ Cs	¹⁴⁴ Ce	⁷ Be	⁴⁰ K	²¹⁴ Bi	²²⁸ Ac
			17	老	音	ß	Ш	H28.10. 3∼ H29. 1. 2		ND	ND	ND	ND	ND	ND	2.8	ND	_	_
大気	浮遊	をじん	ึง :	=			又	H28.10.3~ H29.1.2	$\mathrm{mBq/m}^3$	ND	ND	ND	ND	ND	ND	2.8	ND	_	_
			61	室	1	久	保	H28.10.3~ H29.1.2		ND	ND	ND	ND	ND	ND	3.0	ND	_	_
			J	宒	駮	沼	1	H28.10.18		ND	ND	ND	ND	ND	ND	ND	_	_	_
湖	沼		k ,	宒	駮	沼	1	H28.12. 6		ND	ND	ND	ND	ND	ND	ND	_	_	_
仰	ſロ	/.		宒	駮	沼	2	H28.10.18		ND	ND	ND	ND	ND	ND	ND	_	_	_
			J	宒	駮	沼	2	H28.12. 6		ND	ND	ND	ND	ND	ND	ND	_	_	_
			J	宒			駮	H28.10.25	mBq/ℓ トリチウムに	ND	ND	ND	ND	ND	ND	ND	ND	_	_
水	道	7	k .	Ŧ	蒜	ŧ	平	H28.10.25	ついては Bq/l	ND	ND	ND	ND	ND	ND	ND	ND	_	_
	坦	/.		平			沼	H28.10.26		ND	ND	ND	ND	ND	ND	ND	ND	_	_
				=			又	H28.10.26		ND	ND	ND	ND	ND	ND	ND	ND	_	_
井	戸	7	k ,	宒	馬	洨	1	H28.10.13		ND	ND	ND	ND	ND	ND	ND	160	_	_
71	,	/.		宒	馬	洨	2	H28.10.13		ND	ND	ND	ND	ND	ND	ND	ND	_	_
湖	底	=	Ł۶	킽	馰	ζ	沼	H28.10.18	Bq/kg乾	ND	ND	ND	ND	4	ND	ND	270	ND	ND
生 孚	L(原	1 到		豊			原	H28.10. 4	Bq∕ℓ	ND	ND	ND	ND	ND	ND	ND	47	_	_
	<u> </u>	, 10		六			原	H28.10. 4	Dq/ *	ND	ND	ND	ND	ND	ND	ND	50	_	_
				=			又	H28. 9.25		ND	ND	ND	ND	ND	ND	ND	30	_	_
精		>	K J	Ħ			鎖	H28.10. 4	Bq/kg生	ND	ND	ND	ND	ND	ND	ND	30	_	_
			3	平			沼	H28. 9.25	¹⁴ C/こ	ND	ND	ND	ND	ND	ND	ND	31	_	_
ハ	ク †	ታ .	1	Ŧ			樽	H28.10.19	ついては 上:Bq/kg生 下:Bq/g炭素	ND	ND	ND	ND	ND	ND	ND	83	-	_
ナ	ガ ~	1 =	ŧ.	平			沼	H28.11.15	1.D4/ 8/火糸	ND	ND	ND	ND	ND	ND	ND	130	_	_
ワ :	カサ) } ;	ギノ	宒	馰	<u>-</u> -	沼	H28.10.24		ND	ND	ND	ND	ND	ND	ND	110	_	_
			1	放付	<u>出</u>		口近	H28.10.12	mBq/l	ND	ND	ND	ND	ND	ND	ND	_	_	_
海		7	k =	放 化 地	出 5		口 km 点	H28.10.12	トリチウムに ついては	ND	ND	ND	ND	ND	ND	ND	_	_	_
			, 1	放 有	出 5		□ km	H28.10.12	Bq/l	ND	ND	ND	ND	ND	ND	ND	_	_	_
海	底			<u>地</u> 放付	Н	1	点口近	H28.10.12	Bq/kg乾	ND	ND	ND	ND	ND	ND	ND	190	ND	ND
貝 (ア	・ワ	- ** ビ	類 :	六	ケ 面	所海	村域	H28.11. 2	Bq/kg生	ND	ND	ND	ND	ND	ND	ND	73	_	_
	234 _{I I}								1										

[・]Uは、²³⁴U、²³⁵U及び²³⁸Uの合計。

[・]機器分析による γ 線放出核種、 3 H及び 90 Srの測定値は、試料採取日に補正した値。

		放	射 化	学 分	析			/#± ±z.
³ H	¹⁴ C	⁹⁰ Sr	¹²⁹ I	²³⁹⁺²⁴⁰ Pu	²⁴¹ Am	²⁴⁴ Cm	U	備考
_	_	ND	_	ND	_	_	ND	
_	_	ND	_	ND	_	_	ND	
_	_	ND	_	ND	-	_	ND	
ND	_	ND	_	ND	-	_	47	塩分 18
ND	_	ND	_	ND	_	_	63	塩分 20
ND	_	ND	_	ND	_	_	51	塩分 17
ND	_	ND	_	ND	_	_	64	塩分 20 (海水の塩分は約35)
ND	_	ND	_	ND	_	_	_	
ND	_	ND	_	ND	_	_	_	
ND	_	ND	_	ND	_	_	_	
ND	_	ND	_	ND	_	_	_	
ND	_	ND	_	_	_	_	_	
ND	_	3.8	_	_	_	_	_	
_	_	ND	-	0.90	0.33	ND	100	
_	_	ND	_	_	_	_	_	
_	_	ND	-	_		_	_	
_	87 0.24	ND	_	ND	_	_	ND	
_	89 0.24	ND	_	ND			ND	
_	86 0.23	ND	_	ND	_	_	_	
_	5 0.23	ND	_	ND	_	_	ND	
_	16 0.23	ND	_	ND	_	_	ND	
_	_	ND	_	ND	_	_	0.03	
ND	_	ND	_	ND	_	_	_	
ND	_	ND	_	ND	_	_	_	
ND	_	ND	_	ND	_	_	_	
_	_	ND	_	0.25	0.10	ND	_	
_	_	ND	_	0.002	_	_	_	

(7)大気中の水蒸気状トリチウム測定結果

	155 TC 140 BB	測	定 値	大気中	(参考)アク 開始前の測	ティブ試験 定値の範囲	/++: + *
測定地点	採取期間	大気中濃度 (mBq/m³)	水分中濃度 (Bq/l)	水分量 (g/m³)	大気中濃度 (mBq/m³)	水分中濃度 (Bq/l)	備考
	H28. 9.30 ∼ H28.10.31	ND	ND	8.1			
老 部 川	H28.10.31 ∼ H28.11.30	ND	ND	5.1	ND	ND	
	H28.11.30 ∼ H28.12.28	ND	ND	4.3			
	H28. 9.30 ∼ H28.10.31	ND	ND	7.6			
二 又	H28.10.31 ∼ H28.11.30	ND	ND	4.4	ND	ND	
	H28.11.30 ∼ H28.12.28	ND	ND	3.8			
	H28. 9.30 ∼ H28.10.31	ND	ND	8.4			
室ノ久保	H28.10.31 ∼ H28.11.30	ND	ND	5.2	ND	ND	
	H28.11.30 ∼ H28.12.28	ND	ND	4.4			

[・]測定値は試料採取日に補正した値。

(8)大気中の気体状フッ素測定結果

(単位:ppb)

測定局	測定月	平均	最大	最小	備考
	10 月	ND	ND	ND	
±2, ±17, 111	11 月	ND	ND	ND	
老部川	12 月	ND	ND	ND	
	第3四半期	ND	ND	ND	
	10 月	ND	ND	ND	
二又	11 月	ND	ND	ND	
	12 月	ND	ND	ND	
	第3四半期	ND	ND	ND	
	10 月	ND	ND	ND	
┃ 室/久保	11 月	ND	ND	ND	
至/久体	12 月	ND	ND	ND	
	第3四半期	ND	ND	ND	

^{・「}アクティブ試験開始前の測定値の範囲」は、平成10~17年度の測定値の「最小値~最大値」。

(9)環境試料中のフッ素測定結果

部	式 料	+ 4	Ż	採	取	地,	点	採取年月日	単 位	測定値	備考
大			気				又	H28.10.11~ H28.10.21	$\mu { m g/m}^3$	ND	
			Χ(室	1	久	保	H28.10.11~ H28.10.21	μg/m	ND	
				尾	駮	沼	1	H28.10.18		0.6	塩分 18
湖	滔	!	水	尾	駮	沼	1	H28.12. 6	mg∕ℓ	0.6	塩分 20
114/3	11		//\	尾	駮	沼	2	H28.10.18	mg/ v	0.5	 塩分 17
				尾	駮	沼	2	H28.12. 6		0.6	塩分 20 (海水の塩分は約35)
湖	底		土	尾	駗	Ż	沼	H28.10.18	mg/kg乾	180	
精			米				又	H28. 9.25		ND	
1719			<i>/</i> ∖∖	戸			鎖	H28.10. 4		ND	
ハ	ク	サ	イ	千			樽	H28.10.19	mg/kg生	ND	
ナ	ガ	イ	モ	平			沼	H28.11.15		ND	
ワ	カ	サ	ギ	尾	馰		沼	H28.10.24		15	

^{・「}大気」の測定値は粒子状フッ素及び気体状フッ素の合計。

(10)気象観測結果

①風速·気温·湿度·降水量·積雪深

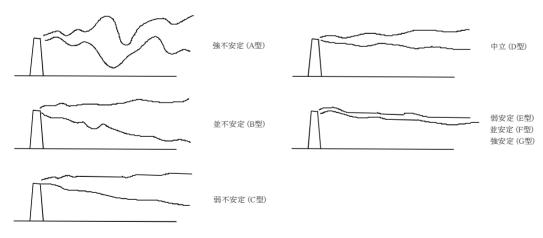
	大仙 地及	11/4/=	= 1× -1	V 1*										-
		風速(r	n/sec)		気温(℃)	湿度	₹(%)	降水量			積雪深(cm)	
測定局	測定月	平均	最大	平均	最高	最低	平均	最小	(mm)	平均	最大	最小	過去	
		, ,	1105	' *	712113	17013	, ,	-12.4			1,00,0	712. 4	平 均	最 大
	10 月	_	_	_	_	_	_	_	102.5	0	0	0	0	0
老部川	11 月	_	_	_	_	_	-	_	74.0	0	5	0	0	10
名 部 川	12 月	_	_	_	_	_	_	_	158.0	2	19	0	7	62
	第3四半期	_	_	_	-	_	-	_	334.5	1	19	0	2	62
	10 月	2.4	8.8	11.5	22.2	-3.3	80	48	102.0	0	0	0	0	0
二又	11 月	3.1	11.2	4.0	14.7	-5.4	84	54	71.0	0	7	0	0	17
	12 月	3.2	10.9	1.4	13.8	-8.2	87	54	132.0	3	26	0	12	58
	第3四半期	2.9	11.2	5.7	22.2	-8.2	84	48	305.0	1	26	0	4	58
	10 月		1	ı	1	1	1	-	104.5	0	0	0	0	0
室ノ久保	11 月	_	_	_	_	_	_	_	72.0	0	8	0	0	15
至 / 久休	12 月	_	_	_	_	_	_	_	155.5	5	31	0	14	78
	第3四半期	_	ı	1	ı	ı	ı	ı	332.0	2	31	0	5	78

[・]測定値は「地上気象観測指針(平成14年気象庁)」に基づく1時間値。

[・]積雪深における「過去の値」は、前年度までの5年間(平成23~27年度)の同一時期の平均値及び最大値。

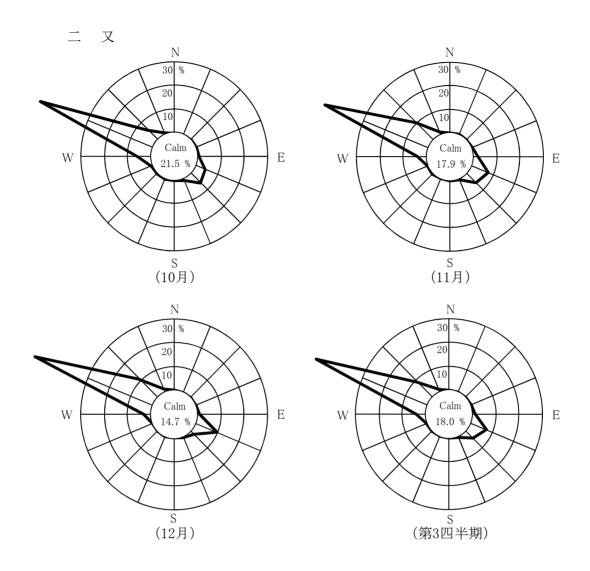
②大気安定度出現頻度表

単位:時間(括弧内は%)


測定局	分類測定月	A	А-В	В	В-С	С	C-D	D	E	F	G	11111	備考
	10 月	10 (1.3)	28 (3.8)	37 (5.0)	10 (1.3)	33 (4.4)	12 (1.6)	407 (54.7)	30 (4.0)	17 (2.3)	160 (21.5)	744 (100)	
二又	11 月	0 (0.0)	13 (1.8)	20 (2.8)	6 (0.8)	16 (2.2)	5 (0.7)	517 (72.2)	10 (1.4)	3 (0.4)	126 (17.6)	716 (100)	
	12 月	0 (0.0)	7 (0.9)	16 (2.2)	6 (0.8)	20 (2.7)	10 (1.3)	539 (72.7)	21 (2.8)	9 (1.2)	113 (15.2)	741 (100)	
	第 3 四 半 期	10 (0.5)	48 (2.2)	73 (3.3)	22 (1.0)	69 (3.1)	27 (1.2)	1463 (66.5)	61 (2.8)	29 (1.3)	399 (18.1)	2201 (100)	

^{・「}発電用原子炉施設の安全解析に関する気象指針(平成13年3月 原子力安全委員会)」に基づく1時間値を用いて分類。

大気安定度分類表


同性(11)		日射量(7	Γ) kW/m ²		放射収支量(Q)kW/m ²				
風速(U) m/s	T≧0.60	0.60>T ≥0.30	0.30>T ≥0.15	0.15>T	Q≧ -0.020	-0.02> Q≧-0.040	-0.040 >Q		
U<2	А	А-В	В	D	D	G	G		
2≦U<3	А-В	В	С	D	D	Е	F		
3≦U<4	В	В-С	С	D	D	D	Е		
4≦U<6	С	C-D	D	D	D	D	D		
6≦U	С	D	D	D	D	D	D		

[・]発電用原子炉施設の安全解析に関する気象指針(平成13年3月 原子力安全委員会)

大気安定度と煙の型との模式

③風配図

Calm:風速0.4 m/sec以下

3. 原子燃料サイクル施設操業状況

(事業者報告)

表中の記号

*:検出限界未満(放射能の分析)

**:分析値が読み取れる限度を下回って

いる場合 (フッ素分析)

/ :放出実績なし

(1) ウラン濃縮工場の操業状況

① 運転状況及び主要な保守状況(平成28年10月~平成28年12月)

(I	<i></i>	ひ王要な保守状況(平成	, 20 平 10 万 9 平成 20 1	ド 1 2 万 /
	運転単位	平成 28 年 10 月	平成 28 年 11 月	平成 28 年 12 月
	RE-1A	% 1		
運	RE — 1 B	※ 2		
転	RE-1C	* 3		
状	RE — 1 D	※ 4		
 況	RE-2A	※ 5		•
	RE — 2B	% 6		
	RE-2C	% 7		
	主要な保守状況	加工施設保知備 ・カスケ処理と ・カスケ処理である。 ・世界のでは、カールのでは、 ・世界のでは、カールのでは、 ・世のでは、カールのでは、 ・世のでは、 ・世のでは、 ・世のでは、 ・世のでは、 ・世のでは、 ・世のでは、 ・世のでは、 ・世のでは、 ・世のでは、 ・世のでは、 ・世のでは、 ・世のでは、 ・一は、 ・一は ・一は	加工施設保期備 ・UF6 (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	加工施設保期信 ・ガスケー理設備 ・UF6 処理でするとのでは、 ・UF6 がでするとのでは、 ・世界のでは、 ・世界のでは、 ・世界のでは、 ・世界のでは、 ・世界のでは、 ・大学では、 ・ため、 ・大学では、 ・大学では、 ・大学では、 ・大学では、 ・大学では、 ・大学では、 ・大学では、 ・大学では、 ・大学では、 ・大学では、 ・大学では、 ・大学では、 ・大学では、 ・大学では、 ・大学では、 ・大学では、 ・大学では、 ・大学では、 ・大学では、 ・ ・大学では、 ・大学で ・大学で ・大学で ・大学で ・大学で ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
	備考	第二期分(RE-2): ※1 RE-1A:生産運転 ※2 RE-1B:生産運転 ※3 RE-1C:生産運転 ※4 RE-1D:生産運転 ※5 RE-2A:150tSWU 生産運転 ※6 RE-2B:生産運転	150トンSWU/年×4運転 150トンSWU/年×3運転 停止中(H12. 4. 3~) 停止中(H14.12.19~) 停止中(H15. 6.30~) 停止中(H17.11.30~) /年のうち、75tSWU/年は 中(H25.5.21~) 停止中(H22.12.15~) 停止中(H20. 2.12~)	¥ 位

② 放射性物質及びフッ素化合物の放出状況(平成28年10月~平成28年12月)

(a) ウラン濃縮施設

放射性	放射性廃棄物等の種類		測定の箇所			平	均	濃	度	管	理	目	標	値	
ウラ	ウラン カール		排	気	П	А	*		(Bq/	cm³)		2 ×	× 10 ⁻⁸	(Bq/c	m ³)
ک	液	体	処	理 水	۲°	ット	*		(Bq/	cm³)		1 ×	(10 ⁻³	(Bq/c	m ³)
フピー	気 体(нғ)	排	気	П	А	*	*	(mg	/m³)		0.1		(mg/	m ³)
ッ合素物	液 体	(F)	処	理 水	۲°	ット	*	*	(m	g/Q)		1		(mg	/Q)
ウランの検出限界濃度は次のとおりである。 気体 :2×10 ⁻⁹ (Bq/cm³)以下 液体 :1×10 ⁻⁴ (Bq/cm³)以下 備 考 フッ素化合物の測定値の読み取れる限度は次のとおりで 気体 :4×10 ⁻³ (mg/m³)以下 液体 :0.1(mg/ℓ))であ	る。							

(b) その他施設(研究開発棟)

放射性	性廃棄物等の	の種類		測定の	箇所		平 均	濃	度	管	理	目	標	値
ウラン	気 体		排	気	П	В	*	(Bq/	em³)		2 >	< 10 ⁻⁸	(Bq/c	m³)
<u>ک</u>	液	体	処	理 水	ピッ	ット	*	(Bq/d	em³)		1 >	< 10 ⁻³	(Bq/c	m ³)
アンド	気 体 (— Н F)	排	気	П	В	* *	(mg/	/m³)		0.1		(mg/	m ³)
ツ素 物	 液体((F)	処	理 水	ピッ	ット	* *	(m;	g/Q)		1		(mg	/Q)
	備考			気体 液体 素化合 気体	: 2 : 1 物の : 4	X 1 (X 1 (測定 X 1 (度は次の) ⁻⁹ (Bq/cr) ⁻⁴ (Bq/cr ご値の読み) ⁻³ (mg/mng/0)	n³)以下 n³)以下 、取れる		は次 0	のとおり)であっ	る。	

(2) 低レベル放射性廃棄物埋設センターの操業状況

① 廃棄物受入れ・埋設数量及び主要な保守状況(平成28年10月~平成28年12月)

	28年10月	28 年 11 月	28 年 12 月	四半期合計	合 計	前年度末 合 計				
受入れ 数量	1,920 本	1,664本	1,520本	5,104 本	10,472 本 295,235 本	284,763 本				
埋 設数 量	1,720 本	1, 160 本	960 本	3,840 本	8,880 本 292,379 本	283,499 本				
主要な保守状 況	実績なし	廃棄物埋設施 設保安規定に 基づく吊り上げ 高さ検査 ・2 号埋設クレ ーン	実績なし							
備考	・ 合計欄の上段は年度合計、下段は累積合計を示す。・ 受入れ数量:廃棄体を低レベル廃棄物管理建屋に搬入した本数・ 埋設数量:廃棄体を埋設設備に定置した本数									

② 放射性物質の放出状況(平成 28 年 10 月~平成 28 年 12 月)

放身	対性廃棄物の種類	測定の箇所	平	均	濃	度	管	理	目	標	値
	H — 3	排 気 口 C			(Bq/	(Bq/cm ³)		5×10 ⁻⁴ (Bq/cm ²			m ³)
気体	Co-60	排 気 口 C			(Bq/	(c m 3)		3 >	< 10 ⁻⁷	(Bq/c	m ³)
	Cs — 137	排 気 口 C			(Bq/	(c m 3)		1 >	< 10 ⁻⁶	(Bq/c	m ³)
	H — 3	サンフ°ルタンク			(Bq/	(c m 3)		6	$\times 10^{0}$	(Bq/c	m ³)
液体	Co-60	サンフ°ルタンク			(Bq/	(c m 3)		1 >	< 10 ⁻²	(Bq/c	m ³)
	Cs-137	サンフ°ルタンク			(Bq/	(c m 3)		7>	< 10 ⁻³	(Bq/c	m ³)
	備考										

③ 地下水中の放射性物質の濃度の測定結果(平成28年10月~平成28年12月)

測定項目	H-3(B	q/cm ³)	Co-60(Bq/cm ³)	Cs-137 (Bq/cm ³)				
測定の箇所	平均値	最高値	平均値	最高値	平均値	最高値			
地下水監視設備(1)	*	*	*	*	*	*			
地下水監視設備(2)	*	*	*	*	*	*			
地下水監視設備(3)	*	*	*	*	*	*			
地下水監視設備(4)	*	*	*	*	*	*			
地下水監視設備(5)	*	*	*	*	*	*			
地下水監視設備(6)	*	*	*	*	*	*			
地下水監視設備(7)	*	*	*	*	*	*			
法に定める濃度限度	6×	10^{1}	2×	10^{-1}	9×	10-2			
・法に定める濃度限度:「核燃料物質又は核燃料物質の製錬の事業に関する規則等の規定に基づく線量原度等を定める告示」(平成 27 年原子力規制委員会告示第 8 号)									

(3) 高レベル放射性廃棄物貯蔵管理センターの操業状況

① 廃棄物受入れ・管理数量及び主要な保守状況(平成28年10月~平成28年12月)

	四半期合計	年度合計	累積合計	前年度末合計
ガラス固化体受入れ数量	132 本	132 本	1,830 本	1,698 本
ガラス固化体管理数量	28 本	28 本	1,726 本	1,698 本
主要な保守状況	•収納管排気設付	で保安規定に基づ 構の入口圧力の測定 とい水の検知装置		
備考		: 入れ数量: ガラス ・理数量: ガラス固		

② 放射性物質の放出状況(平成 28 年 10 月~平成 28 年 12 月)

放身	材性廃棄物の種類	 測定の箇所 	平 均 濃 度		管理目標値
気	放射性ルテニウム	排気口 D	*	(Bq/cm ³)	$1 \times 10^{-7} (\mathrm{Bq/cm^3})$
体	放射性セシウム	 排気口 D	*	(Bq/cm ³)	9×10 ⁻⁷ (Bq/cm ³)
	備考	検出限界濃 放射性ル 放射性セ		とおりである。 ×10 ⁻⁸ (Bq/e ×10 ⁻⁹ (Bq/e	cm³)以下

(4) 再処理工場の操業状況

① 使用済燃料受入れ量、再処理量及び在庫量並びに主要な保守状況

① 使用済燃料受入れ量、再処理量及び在庫量並びに主要な保守状況(平成 28 年 10 月~平成 28 年 12 月)										
		四半期合計	年度合計	累積合計	前年度末合計					
受入	PWR 燃料集合体	0 体 0 t・UPr	0 体 0 t•UPr	3,942 体 約 1,690 t・UPr	3,942 体 約 1,690 t・UPr					
れ 量	BWR 燃料集合体	22 体 約 4 t・UPr	22 体 約 4 t•UPr	9,829 体 約 1,703 t・UPr	9,807 体 約 1,699 t·UPr					
再処	PWR 燃料集合体	0 体 0 t・UPr	0 体 0 t•UPr	456 体 約 206 t・UPr	456 体 約 206 t・UPr					
理量	BWR 燃料集合体	0 体 0 t・UPr	0 体 0 t•UPr	1,246 体 約 219 t•UPr	1,246 体 約 219 t·UPr					
在庫量	PW		3,486 体 約 1,484 t・UPr	3,486 体 約 1,484 t・UPr						
量(12 月 末)	BW	R 燃料集合体		8,583 体 約 1,484 t・UPr	8,561 体 約 1,480 t•UPr					
	主要な保守状況	安定期間では、 とは、 とは、 とは、 とは、 とは、 とは、 とは、 と	蔵用)、大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大							
	備考			i /量については端∛	 数処理しているた					

② 製品の生産量(実績)(平成28年10月~平成28年12月)

	生産量			
	ウラン製品 (ウラン酸化物製品)	プルトニウム製品 (ウラン・プルトニウム混合酸化物製品)		
四半期	約2 t•U	0 kg		
累計	約 366 t•U	約 6,656 kg		
備考	お、ウラン試験に用いた金属ウランいない。	品の金属ウランの質量換算とする。なン(51.7 t·U)は、ウラン製品には含めてルトニウム混合酸化物の金属ウラン及質量換算とする。		

③ 放射性物質の放出状況(平成 28 年 10 月~平成 28 年 12 月)

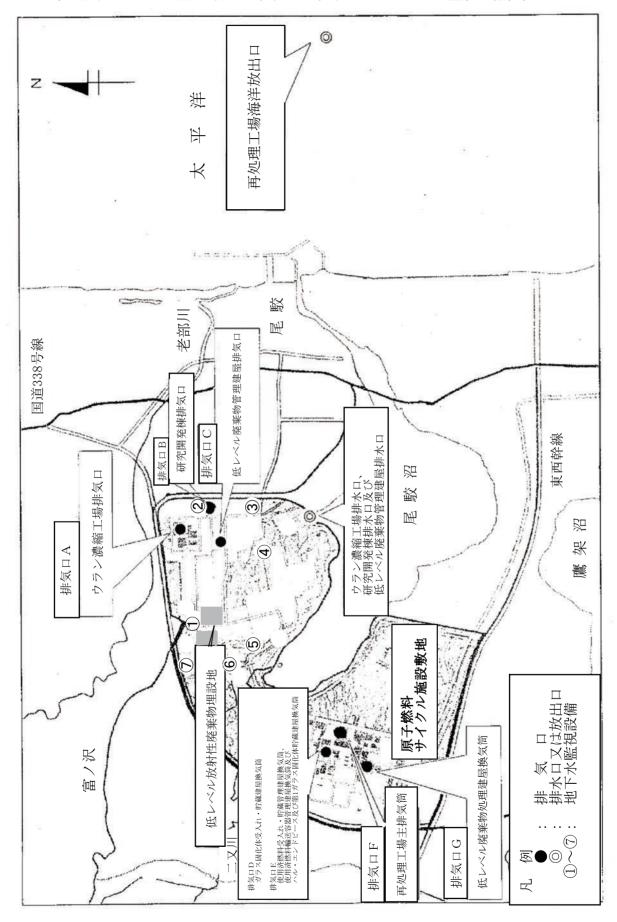
(a) 放射性液体廃棄物の放射性物質の放出量

核種		放	出	量		年間放出	
(測定の箇所)	第1四半期	第2四半期	第3四半期	第4四半期	年度合計	管理目標値	
H-3	4.3×10^9	3.1×10^{10}	1.2×10^9		3.6×10^{10}	1.8×10^{16}	
(放出前貯槽)	(Bq)	(Bq)	(Bq)	(Bq)	(Bq)	(Bq)	
I-129	6.2×10^{5}	4.4×10^6	1.9×10^{6}		6.9×10^{6}	4.3×10^{10}	
(放出前貯槽)	(Bq)	(Bq)	(Bq)	(Bq)	(Bq)	(Bq)	
I-131	*	*	*		*	1.7×10^{11}	
(放出前貯槽)	(Bq)	(Bq)	(Bq)	(Bq)	(Bq)	(Bq)	
その他 α線を 放出する核種	* (Bq)	* (Bq)	* (Bq)	(Bq)	* (Bq)	3.8×10^9 (Bq)	
(放出前貯槽)	(Bq)	(54)	(Bq)	(Bq)	(Bq)	(54)	
その他 α線を 放出しない核種 (放出前貯槽)	* (Bq)	* (Bq)	* (Bq)	(Bq)	* (Bq)	2.1×10 ¹¹ (Bq)	
備考	放射性物質の放出量(Bq)は、排水中の放射性物質の濃度(Bq/cm³)に排水量 (cm³)を乗じて求めている。 検出限界濃度は次に示すとおりである。 H-3 :2×10 ⁻¹ (Bq/cm³)以下 I-129 :2×10 ⁻³ (Bq/cm³)以下 I-131 :2×10 ⁻² (Bq/cm³)以下 その他α線を放出する核種 :4×10 ⁻³ (Bq/cm³)以下 その他α線を放出しない核種 :4×10 ⁻² (Bq/cm³)以下						

(b) 放射性気体廃棄物の放射性物質の放出量

核種		放	出	量		年間放出
(測定の箇所)	第1四半期	第2四半期	第3四半期	第4四半期	年度合計	管理目標值
Kr-85	*	*	*		*	3.3×10^{17}
(排気口 E, F)	(Bq)	(Bq)	(Bq)	(Bq)	(Bq)	(Bq)
H - 3	3.4×10^{10}	3.3×10^{10}	3.1×10^{10}		9.9×10^{10}	1.9×10^{15}
(排気口 E, F, G)	(Bq)	(Bq)	(Bq)	(Bq)	(Bq)	(Bq)
C-14	*	*	*		*	5.2×10^{13}
(排気口 F)	(Bq)	(Bq)	(Bq)	(Bq)	(Bq)	(Bq)
I-129	*	*	*		*	1.1×10^{10}
(排気口 E, F)	(Bq)	(Bq)	(Bq)	(Bq)	(Bq)	(Bq)
I-131	*	*	*		*	1.7×10^{10}
(排気口 F)	(Bq)	(Bq)	(Bq)	(Bq)	(Bq)	(Bq)
その他 α線を	*	*	*		*	3.3×10^{8}
放出する核種				(D =)		
(排気口 E, F, G)	(Bq)	(Bq)	(Bq)	(Bq)	(Bq)	(Bq)
その他α線を	*	*	*		*	9.4×10^{10}
放出しない核種				(D =)		
(排気口 E, F, G)	(Bq)	(Bq)	(Bq)	(Bq)	(Bq)	(Bq)

放射性物質の放出量(Bq)は、排気中の放射性物質の濃度(Bq/cm³)に排気量(cm³)を乗じて求めている。


排気口Eは、使用済燃料受入れ・貯蔵建屋換気筒、ハル・エンドピース及び第1ガラス固化体貯蔵建屋換気筒、使用済燃料輸送容器管理建屋換気筒の排気口であり、これらのうちいずれかの排気口で測定している核種について放出量を記載している。

備考

検出限界濃度は次に示すとおりである。

Kr-85 : 2×10^{-2} (Bq/cm³)以下 H-3 : 4×10^{-5} (Bq/cm³)以下 C-14 : 4×10^{-5} (Bq/cm³)以下 I-129 : 4×10^{-8} (Bq/cm³)以下 7×10^{-9} (Bq/cm³)以下 その他 α 線を放出する核種 : 4×10^{-10} (Bq/cm³)以下 その他 α 線を放出しない核種 : 4×10^{-9} (Bq/cm³)以下

図 原子燃料サイクル施設の排気口、排水口、放出口及び地下水監視設備位置図

参考資料

- 1. モニタリングポスト測定結果
 - (1) 再処理事業所モニタリングポスト
 - ① 空間放射線量率(低線量率計)
 - ② 大気中の気体状β放射能(クリプトン-85換算)
 - (2) 濃縮・埋設事業所モニタリングポスト
 - ① 空間放射線量率(低線量率計)
- 2. 再処理工場の液体廃棄物の放出量測定結果
- 3. 再処理工場の気体廃棄物の放出量測定結果
- 4. 気象観測結果
 - ① 風速

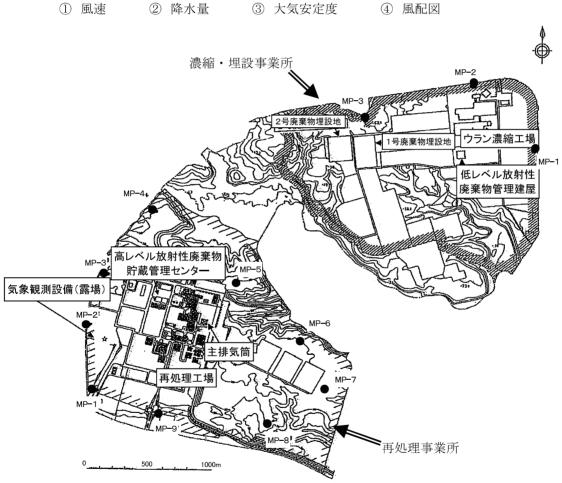


図 モニタリングポスト、主排気筒、気象観測設備配置図

1.モニタリングポスト測定結果

(1)再処理事業所モニタリングポスト(平成28年10月~平成28年12月)

①空間放射線量率(低線量率計)

(単位:nGy/h)

	里平(以)水里干	117	ı	1		(平世·IIOy/II)
測定地点	測定月	平均	最大	最小	過去最大値	備 考
	10 月	17	35	15		
) (D) 1	11 月	18	47	14	0.1	
MP-1	12 月	18	57	13	91	
	第3四半期	18	57	13	1	
	10 月	20	37	18		
MD 0	11 月	20	44	17	110	
MP-2	12 月	20	54	16	112	
	第3四半期	20	54	16]	
	10 月	17	35	15		
MD 2	11 月	17	50	14	140	
MP-3	12 月	18	57	13	142	
	第3四半期	17	57	13]	
	10 月	18	35	16		
MP-4	11 月	18	55	15	123	
MP=4	12 月	19	52	14	123	
	第3四半期	18	55	14]	
	10 月	17	34	16		
MP-5	11 月	17	51	14	123	
MIF-5	12 月	18	48	14	123	
	第3四半期	18	51	14		
	10 月	17	34	15		
MP-6	11 月	17	51	14	128	
MIF-0	12 月	18	51	13	120	
	第3四半期	17	51	13		
	10 月	18	42	16		
MP-7	11 月	19	54	15	150	
IVIF	12 月	20	55	15] 150	
	第3四半期	19	55	15		
	10 月	18	39	16		
MP-8	11 月	18	45	15	111	
IVIF O	12 月	19	55	14		
	第3四半期	18	55	14		
	10 月	19	39	17		
MP-9	11 月	19	47	16	103	
MIL-A	12 月	20	53	15	103	
	第3四半期	19	53	15		

[・]3″ ϕ ×3″NaI(Tl)シンチレーション検出器(温度補償型)、連続測定(1時間値)、局舎屋根(地上約6 m)に設置。・測定値は1時間値。

[・]測定値は、3 MeVを超える高エネルギー成分を含まない。

^{・「}過去最大値」は、平成23~27年度までの測定値の最大値。

②大気中の気体状β放射能(クリプトン-85換算)

(単位:kBq/m³)

測定地点	測定月	平均	最大	最小	過去最大値	備考
	10 月	ND	ND	ND		定量下限値以上となった回数
MP-1	11 月	ND	ND	ND	3	:0回
IVII I	12 月	ND	ND	ND	Ü	
	第3四半期	ND	ND	ND		
	10 月	ND	ND	ND		定量下限値以上となった回数
MP-2	11 月	ND	ND	ND	4	:0回
1411 2	12 月	ND	ND	ND	1	
	第3四半期	ND	ND	ND		
	10 月	ND	ND	ND		定量下限値以上となった回数
MP-3	11 月	ND	ND	ND	3	:0回
Wii 5	12 月	ND	ND	ND	3	
	第3四半期	ND	ND	ND		
	10 月	ND	ND	ND		定量下限値以上となった回数
MP-4	11 月	ND	ND	ND	3	:0回
IVII 4	12 月	ND	ND	ND	3	
	第3四半期	ND	ND	ND		
	10 月	ND	ND	ND		定量下限値以上となった回数
MP-5	11 月	ND	ND	ND	5	:0回
IVIF 5	12 月	ND	ND	ND	5	
	第3四半期	ND	ND	ND		
	10 月	ND	ND	ND		定量下限値以上となった回数
MP-6	11 月	ND	ND	ND	11	:0回
IVIF O	12 月	ND	ND	ND	11	
	第3四半期	ND	ND	ND		
	10 月	ND	ND	ND		定量下限値以上となった回数
MP-7	11 月	ND	ND	ND	16	:0回
1011	12 月	ND	ND	ND	10	
	第3四半期	ND	ND	ND		
	10 月	ND	ND	ND		定量下限値以上となった回数
MP-8	11 月	ND	ND	ND	9	:0回
IVIF-0	12 月	ND	ND	ND		
	第3四半期	ND	ND	ND		
	10 月	ND	ND	ND		定量下限値以上となった回数
MD 0	11 月	ND	ND	ND	9	:0回
MP-9	12 月	ND	ND	ND	3	
	第3四半期	ND	ND	ND		

- ・プラスチックシンチレーション検出器(350×300×0.5 mm)、連続測定(1時間値)
- ・測定値は1時間値。
- ・NDは、定量下限値(2 kBq/m³)未満を示す。
- ・「過去最大値」は、平成7~27年度の測定値の最大値。
- ・平均値の算出においては、測定値に定量下限値未満のものが含まれる場合、定量下限値を測定値として算出し、平均値に「<」を付ける。すべての測定値が定量下限値未満の場合、平均値も定量下限値未満とし「ND」と示す。

(2)濃縮・埋設事業所モニタリングポスト(平成28年10月~平成28年12月)

①空間放射線量率(低線量率計)

(単位:nGy/h)

測定地点	測定月	平均	最大	最小	過去最大値	備 考
	10 月	20	40	18		
MP-1	11 月	20	46	17	120	
1011 1	12 月	21	70	15	120	
	第3四半期	21	70	15		
	10 月	24	38	22		
MP-2	11 月	24	44	21	107	
IVII Z	12 月	24	66	19	107	
	第3四半期	24	66	19		
	10 月	24	38	22		
MP-3	11 月	24	49	21	115	
MIL_2	12 月	24	64	18	119	
	第3四半期	24	64	18		

- ・2" φ×2"NaI(Tl)シンチレーション検出器(温度補償型)、連続測定(1時間値)、地上約1.8 mに設置。
- ・測定値は1時間値。
- ・測定値は、3 MeVを超える高エネルギー成分を含まない。 ・「過去最大値」は、平成23~27年度までの測定値の最大値。

2. 再処理工場の液体廃棄物の放出量測定結果 (平成28年10月 ~ 平成28年12月)

(単位:Bq)

測定月	³ H	¹²⁹ I	¹³¹ I	その他 α 線を 放出する核種	その他 α線を 放出しない核種	備考
10 月	3.0×10 ⁸ (5.1×10 ⁷)	9.0×10 ⁵ (2.4×10 ⁵)	*	*	*	
11 月	4.5×10 ⁸ (5.2×10 ⁷)	5.3×10 ⁵ (2.4×10 ⁵)	*	*	*	
12 月	4.5×10 ⁸ (5.2×10 ⁷)	5.2×10 ⁵ (3.8×10 ⁵)	*	*	*	
第3四半期	1.2×10 ⁹ (1.5×10 ⁸)	1.9×10 ⁶ (8.5×10 ⁵)	*	*	*	

^{・「}その他 α 線を放出する核種」は全 α 、「その他 α 線を放出しない核種」は全 $\beta(\gamma)$ である。

 $\pm \alpha$ 又は $\pm \beta$ (γ)が検出限界以上の場合は、当該試料について核種別に測定した結果を用いて算出している。

()内の数値は、測定結果が有意値となったときの検出限界濃度 (Bq/cm^3) に排水量 (cm^3) を乗じて算出した放射能(Bq)を足し合わせた量である。

(参考)その他 α 線を放出する核種及びその他 α 線を放出しない核種の核種ごとの放出量

(単位:Bq)

測定月	Pu(α)	$Am(\alpha)$	Cm(\alpha)	²⁴¹ Pu	⁶⁰ Co	¹⁰⁶ Ru	¹³⁴ Cs	¹³⁷ Cs
10 月	*	*	*	*	*	*	*	*
11 月	*	*	*	*	*	*	*	*
12 月	*	*	*	*	*	*	*	*
第3四半期	*	*	*	*	*	*	*	*

測定月	¹⁵⁴ Eu	¹⁴⁴ Ce	⁹⁰ Sr	備考
10 月	*	*		
11 月	*	*		
12 月	*	*		
第3四半期	*	*	*	

^{・90}Srは、四半期ごとに測定している。

3. 再処理工場の気体廃棄物の放出量測定結果 (平成28年10月 ~ 平成28年12月)

(単位:Bq)

測定月	⁸⁵ Kr	³ H	¹⁴ C	¹²⁹ I	^{131}I	その他 α 線を 放出する核種	その他 α 線を 放出しない核種	備考
10 月	*	1.2×10 ¹⁰ (2.1×10 ⁹)	*	*	*	*	*	
11 月	*	1.1×10 ¹⁰ (1.3×10 ⁹)	*	*	*	*	*	
12 月	*	8.7×10 ⁹ (1.1×10 ⁹)	*	*	*	*	*	
第3四半期	*	3.1×10 ¹⁰ (4.6×10 ⁹)	*	*	*	*	*	

^{・「}その他 α 線を放出する核種」は全 α 、「その他 α 線を放出しない核種」は全 β (γ)及び揮発性 106 Ruである。

(参考)その他 α 線を放出する核種及びその他 α 線を放出しない核種の核種ごとの放出量 (単位:Bq)

測定月	Pu(α)	¹⁰⁶ Ru	¹³⁷ Cs	⁹⁰ Sr	備考
10 月	*	*	*		
11 月	*	*	*		
12 月	*	*	*		
第3四半期	*	*	*	*	

^{・90}Srは、四半期ごとに測定している。

全 α 又は全 β (γ)が検出限界以上の場合は、当該試料について核種別に測定した結果を用いて算出している。

^()内の数値は、測定結果が有意値となったときの検出限界濃度 (Bq/cm^3) に排気量 (cm^3) を乗じて算出した放射能(Bq)を足し合わせた量である。

○放出量測定結果における検出限界濃度

(1) 液体廃棄物の検出限界濃度

(単位:Bq/cm³)

核種	検出限界濃度
³ H	2×10 ⁻¹ 以下
¹²⁹ I	2×10 ⁻³ 以下
¹³¹ I	2×10 ⁻² 以下
全α	4×10 ⁻³ 以下
全β(γ)	4×10 ⁻² 以下
Pu(α)	1×10 ⁻³ 以下
Am(α)	6×10 ⁻⁵ 以下
Cm(α)	6×10 ⁻⁵ 以下
²⁴¹ Pu	3×10 ⁻² 以下
⁶⁰ Co	2×10 ⁻² 以下
¹⁰⁶ Ru	2×10 ⁻² 以下
¹³⁴ Cs	2×10 ⁻² 以下
¹³⁷ Cs	2×10-2 以下
¹⁵⁴ Eu	2×10 ⁻² 以下
¹⁴⁴ Ce	2×10 ⁻² 以下
⁹⁰ Sr	7×10 ⁻⁴ 以下

(2) 気体廃棄物の検出限界濃度

(単位:Bq/cm³)

NH SON A S BEILD I KA	(—E:Bq/ cm /
核種	検出限界濃度
⁸⁵ Kr	2×10 ⁻² 以下
³ H	4×10 ⁻⁵ 以下
¹⁴ C	4×10 ⁻⁵ 以下
¹²⁹ I	4×10 ⁻⁸ 以下
¹³¹ I	7×10 ⁻⁹ 以下
全 α	4×10 ⁻¹⁰ 以下
全β(γ)	4×10 ⁻⁹ 以下
Pu(α)	4×10 ⁻¹⁰ 以下
¹⁰⁶ Ru	4×10 ⁻⁹ 以下
¹³⁷ Cs	4×10 ⁻⁹ 以下
⁹⁰ Sr	4×10 ⁻¹⁰ 以下

^{・&}lt;sup>106</sup>Ruは粒子状¹⁰⁶Ru及び揮発性¹⁰⁶Ruそれぞれに対する値を示した。

4. 気象観測結果(平成28年10月~平成28年12月)

①風 速

測定地点	測定月	風速(n	備考	
例足地点	例足力	平 均	最 大	VIII 与
	10 月	4.6	13.3	
地上10 m	11 月	4.5	13.2	
地上10 m	12 月	4.7	14.9	
	第3四半期	4.6	14.9	
	10 月	8.0	20.9	
地上150 m	11 月	8.7	21.2	
де100 m	12 月	9.1	21.5	
	第3四半期	8.6	21.5	

- ・「地上気象観測指針(平成14年気象庁)」に基づく1時間値。
- ·地上10 m:風向風速計[超音波式](気象庁検定付)、連続測定(1時間値)
- ・地上150 m:ドップラーソーダ、連続測定(1時間値)

②降水量

測定地点	測定月	降水量(mm)	備考
献 4日	10 月 11 月	108.0 87.5	
露場	12 月	155.5	
	第3四半期	351.0	

- ・「地上気象観測指針(平成14年 気象庁)」に基づく1時間値を用いて算出。
- ・雨雪量計[転倒ます型](気象庁検定付)

③大気安定度 (単位:時間[括弧内は%]) 分類 備考 測定地点 А-В В В-С С C-D D Е F 測定月 25 10 2.7 493 25 106 744 12 17 10 月 (0.7)(1.6)(3.4)(1.3)(3.6)(3.2)(66.3)(3.4)(2.3)(14.2)(100)6 525 20 720 11 月 (0.8)(1.7)(72.9)(2.8)(4.0)(12.8)(0.0)(3.2)(0.6)(1.3)(100)露場 571 26 73 744 0 8 16 30 14 12 月 (0.3)(0.0)(1.1)(0.5)(2.2)(1.9)(76.7)(3.5)(4.0)(9.8)(100)第 3 1589 2208

・「発電用原子炉施設の安全解析に関する気象指針(平成13年3月 原子力安全委員会)」に基づく1時間値を用いて分類。

(2.4)

(2.3)

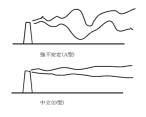
(72.0)

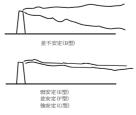
(3.2)

(0.8)

・風向風速計[超音波式](気象庁検定付)、日射計[電気式](気象庁検定付)、放射収支計[熱電対式]

大気安定度分類表

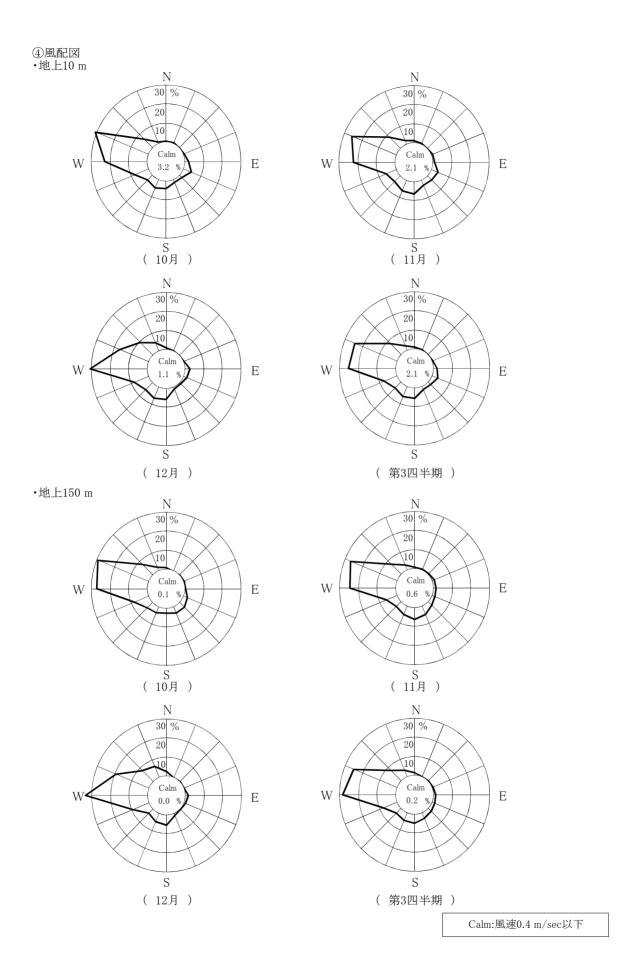

四半期


(0.2)

(0.9)

7 7 7 7		日射量(7	Γ) kW/m ²		放射	収支量(Q)kV	V/m ²
風速(U) m/s	T≧0.60	0.60>T ≥0.30	0.30>T ≥0.15	0.15>T	Q≧ -0.020	-0.02 > Q≧-0.040	-0.040 >Q
U<2	А	А-В	В	D	D	G	G
2≦U<3	А-В	В	С	D	D	Е	F
3≦U<4	В	В-С	С	D	D	D	Е
4≦U<6	С	C-D	D	D	D	D	D
6≦U	С	D	D	D	D	D	D

発電用原子炉施設の安全解析に関する気象指針(平成13年3月 原子力安全委員会)



(3.4)

(100)

(12.3)

大気安定度と煙の型との模式

4. 原子燃料サイクル施設に係る 環境放射線等モニタリング実施要領

原子燃料サイクル施設に係る環境放射線等モニタリング実施要領

平成 元 年 3月策定 平成 5 年 3月改訂 平成 7 年 6月改訂 平成 9 年11月改訂 平成13年 4月改訂 平成14年 4月改訂 平成15年 4月改訂 平成15年 8月改訂 平成17年10月改訂 平成19年 3月改訂 平成21年 4月改訂 平成22年 3月改訂 平成23年 4月改訂 平成24年 3月改訂 平成25年 4月改訂 平成26年 4月改訂 平成27年 3月改訂 平成28年 3月改訂 平成28年11月改訂

1. 趣旨

「原子燃料サイクル施設に係る環境放射線等モニタリング基本計画」により環境放射線等の測定 方法、分析方法等について必要な事項を定めるものとする。

測定装置及び測定方法 (1) 空 間 放 射 線

其 徐 祥	测定方法	測定法:同左				測定位置:同左	校正線源:226Ra		
日本原然株	測定装置	·低線量率計:同 左				•高線量率計	14 0、8 気圧球形窒素ガス+アルゴ 校正線源:226Ra	ンガス加圧型電離箱検出器(加温装	置付)
茶	測 定 方 法	測 定 法:文部科学省編「連続モニタによる環	境γ線測定法」(平成8年改訂)に準	拠 連続測定 (1時間値)	測定位置:地上 1.8 m	校正線源: ¹³⁷ Cs			
単	測定装置	•低線量率計	3" φ×3" NaI(TI)シンチワーション 権田	器(温度補償方式加温装置付)、G(E)関	数荷重演算方式	•高線量率計	14 0、4 気圧球形窒素ガス+アルゴンガス	加圧型電離箱検出器(加温装置付)	
면				Ĭ	トータンノグルル	マンニンコントラー マートコンドルーグ 田井田 中田 中田 神田	知同及名兩里半		

								ı
므		业		楪	省			
ī.	測	定装	星		測定	为	法	
	低線量率計			測定法:	定 法:文部科学省編「連続モニタによる環	『連続モ	ニタによる環	-1-1
	3″ φ×3″ NaI(TI)シンチレーション検出	I(TI)シンチレ	ーション横田		境γ線測定法」(平成8年改訂)に準	3] (平成	8年改訂》に準	1111
Ĭ , , , , , , , , , , , , , , , , , , ,	器(温度補償方式加温装置付)、G(E)関	5式加温装置	畳付)、G(E)関		拠 連続測定(1時間值)	(1 時間	重)	
	数荷重演算方式	壮		測定位置:	測定位置:地上3.8 m(屋根上)(東北町役場、	a根上)(東北町役場、東	1_1
マ くし に その子 田本田が田が田が田が田が田が田が田が田が田が田が田が田が田が田が田が田が田が田					北分庁舎、三沢市役所)	沢市役所	()	
公司及名禄里华					地上 3.4 m(屋根上)(横浜町役場)	钱根上)(ᡮ	黄浜町役場)	
					地上 1.8 m(野辺地、砂子又)	f辺地、砂	5子又)	
				校正線源:137Cs	$^{137}\mathrm{Cs}$			

日本原然株式会社	測定装置 測定方法	•同 左							
茶	測 定 方 法	測 定 法:文部科学省編「蛍光ガラス線量計を用	いた環境γ線量測定法」(平成14年)	に準拠	素 子 数:地点当たり3個	積算期間:3 箇月	収 納 箱:木製	测定位置:地上1.8 m	校正線源:137Cs
舥	測 定 装 置	・蛍光ガラス線量計(RPLD)							
					1	惧 异 쨌 里			

(2) 環境試料中の放射能

┸	. 单	森	日本原燃株式会社
	測 定 装 置	測 定 方 法	測定装置 測定方法
	・ダストモニタ	測 定 法:文部科学省編「全ベータ放射能	•同 左
	★ 田 器	測定法」(昭和 51 年改訂)に準	
	α線、β線用 50 mmφ ZnS(Ag)+プラス	拠 連続測定	
	チッケシンチレーション検出器	集じん時間:168 時間	
十一一十一一十一十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十		計 測 時 間:集じん終了後 72 時間放置	
人名子母した子の一人を下げる。		1 時間測定	
土α及い土り及約胎		集じん方法: ろ紙間けつ自動移動方式	
		ろ 紙:長尺ろ紙 (HE-40T)	
		大気吸引量:約100 8/分	
		吸引口位置:地上1.5~2.0 m	
		校正線源: N3O8	
	β線ガスモニタ	測 定 法:連続測定(1時間値)	測 定 法:同 左
+ +	検 田 器	大気吸引量:約6.5 0/分	大気吸引量:同 左
14	プラスチックシンチレーション検出器(350 吸引口位置:地上 1.5~2.0 m	吸引口位置:地上1.5~2.0 m	吸引口位置:同 左
X 体化 D 从 N E	×300×0.5 mm×2 枚)	装置設置前の初期校正線源: ⁸⁵ Kr	装置設置前の初期校正線源:同左
	検出槽容量 約300	装置設置後の定期校正線源:137Cs	装置設置後の定期校正線源: ¹³³ Ba

# 1	ц Ч					丰		楪	当			日本原	原燃株式会社	.,
		測						測				測定装置	測定方法	
		・ゲルマニ	ニウム半	導体検出器			8科学省編	「ゲルマニ	ウム半導	本検出器によるガンマ線ス・	ペクトロメト	<u>=</u>		
文部科学省編「グルマニウム半導体検出器等を用いる機器分析のための試料 文部科学省編「グルマニウム半導体検出器等を用いる機器分析のための試料 支部科学省編 「放射性は シテクが注」(平成 8 年改訂)に準拠 対意、						U	-」(平成4	年改訂)						
						大部	科学省編	ゲルマニウ	7ム半導体	倹出器等を用いる機器分析 (のための試料			
(セルラント液体 測 を						の前]処理法]	(昭和57年)						
制定数析形態:降 下 物						文部	科学省編	「放射性ヨヷ	う素分析法	」(平成8年改訂)に準拠				
大気等遊じん 3 6 月分の 5 紙の 集積					測定試	:料形態:降	下	蒸発残留4	物					
前						大気	浮遊じん		りろ紙の集	積				
本道本 井戸林						河川7	水、湖沼水 ^{※1} ∫		H-fm					
# 表土、河底土、	4					水道/	水、井戸水		季					
	部 名 存 子 式 校					表十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	、河底土、〕							
機 音 産 物 灰化物 (牛乳中の ¹³¹ 」の測定では生試料) 指標 生 物 灰化物 (牛乳中の ¹³¹ 」の測定では生試料) 箱 水 水	家以日					挺	原上							
# 様 生物 灰化物						丰	誓 産 物		牛乳中の1	31 の測定では生試料)				
第 本 木、 サ代法による沈殿物 簡 店 土 乾燥細土 海 産 粉 灰化物 側 定 器:U-8 容器:マリネリ容器 漁 定 時 間:80,000 移 ・低バックグラウンド液体 測 定 法:文部科学省編「トリチウム分析法」(平成14年改訂)に準拠 ・低バックグラウンド液体 測 定 器:145 mo/ベイアル 潮 定 時間:500 分(50 分、10 回測定) 測 定 法:文部科学省編「放射性炭素分析法」(平成5年)のベンゼン合成法に準拠 ・低バックグラウンド液体 測 定 法:文部科学省編「放射性炭素分析法」(平成5年)のベンゼン合成法に準拠 ・低バックグラウンド液体 測 定 法:文部科学省編「放射性炭素分析法」(平成5年)のベンゼン合成法に準拠 別 定 路 器:3 mo バイアル ・同 左 ツンチレーション計数装置 測 定 路 間:500 分(50 分、10 回測定) 測 定 時 間:500 分(50 分、10 回測定) ・同 左						描		灰化物						
 商 治 水**・						集		共沈法に.	よる沈殿物	a				
・低バックグラウンド液体 測 定 特 1.0-8 容器、マリネリ容器 ・低バックグラウンド液体 測 定						通								
海産 地						兼		乾燥細土						
・低バックグラウンド液体 測 定 時間:80,000 秒 ・低バックグラウンド液体 測 定 法:文部科学省編「トリチウム分析法」(平成14年改訂)に準拠 ・同 左 測 定 法:同 測定容器:145 m0・イアル シンチレーション計数装置 測 定 時間:500 分(50 分、10 回測定) ・低バックグラウンド液体 測 定 法:文部科学省編「放射性炭素分析法」(平成5年)のペンゼン合成法に準拠 ・低バックグラウンド液体 測 定 法:文部科学省編「放射性炭素分析法」(平成5年)のペンゼン合成法に準拠 ・低バックグラウンド液体 測 定 法:文部科学省編「放射性炭素分析法」(平成5年)のペンゼン合成法に準拠 測 定 器:3 m0・バイアル ・同 左 ツンチレーション計数装置 測 定 時間:500 分(50 分、10 回測定) 測 定 時間:500 分(50 分、10 回測定) ・回 差						海		灰化物						
・低バックグラウンド液体測 定 法:文部科学省編「トリチウム分析法」(平成 14 年改訂)に準拠・同 左 測 定 法:同 左 測 定 法:シンチレーション計数装置測 定 容 器:145 m0パイアル 測 定 時 間:500 分(50 分、10 回測定)測定 符・低バックグラウンド液体測 定 法:文部科学省編「放射性炭素分析法」(平成 5 年)のベンゼン合成法に準拠・同 左・近バックグラウンド液体測 定 容 器:3 m0パイアル 測 定 容 器:3 m0パイアル・同 左					運流	容器:0-8	容器、マリ	ネリ容器						
・低バックグラウンド液体 測定 法:文部科学省編「トリチウム分析法」(平成14年改訂)に準拠 ・同 左 測定 法: 立 部 2 法: 立 部 3 m 2 パイアル シンチレーション計数装置 測定 時間:500分(50分、10回測定) 測定 時間: 1 測定 時間: 500分(50分、10回測定) ・低バックグラウンド液体 測定 注: 文部科学省編「放射性炭素分析法」(平成5年)のベンゼン合成法に準拠 ・同 左 測定時間: 1 対 2 計 表 2 部 3 m 2 パイアル ・ンチレーション計数装置 測定 容 器: 3 m 2 パイアル ・同 左 測定 時間: 500分(50分、10回測定)					運流	時間:80,0	00 秒							
シンチレーション計数装置 測 定 時間:500 分(50 分、10 回測定) 測定容器: 1 ・低バックグラウンド液体 測 定 法:文部科学省編「放射性炭素分析法」(平成5年)のペンゼン合成法に準拠 ・同 左 ・ンチレーション計数装置 測 定 容器:3 moバイアル ・同 左 測 定 容器:3 moバイアル 測 定 容器:3 moバイアル 測 定 時間:500 分(50 分、10 回測定) 測 定 時間:500 分(50 分、10 回測定)		・低バック	7 グラウ	ンド液体			3科学省編	「トリチウ.	ム分析法」	(平成14年改訂)に準拠			定 法:同	
・低バックグラウンド液体 測 定 法:文部科学省編「放射性炭素分析法」(平成5年)のベンゼン合成法に準拠 ・同 左 シンチレーション計数装置 測 定 容 器:3 m0バイアル 測 定 時 間:500 分(50 分、10 回測定) 10 回測定)	放射化学分析		ジージョ	ン計数装置	運流	容器:145	mのバイアル	`					測定容器: 100 m	97
・低バックグラウンド液体 測 定 法: 文部科学省編「放射性炭素分析法」(平成5年)のペンゼン合成法に準拠 ・同 左 シンチレーション計数装置 測 定 容 器:3 m0バイアル 測 定 時 間:500 分(50 分、10 回測定) 測 定 時 間:500 分(50 分、10 回測定)	$H_{\rm g}$				運流	時間:200	分(50分)	10 回測定)					ググ	7
・低バックグラウンド液体 測 定 法:文部科学省編「放射性炭素分析法」(平成5年)のベンゼン合成法に準拠 ・同 シンチレーション計数装置 測 定 容 器:3 m&バイアル 測 定 時 間:500 分(50 分、10 回測定)													叵	111
ンンチレーション計数装置 測 定 容 器:3 mのイ	4 年 7 多 7 市	・低バック	ハグラウ	ンド液体			3科学省編	「放射性炭	素分析法」	(平成5年)のベンゼン合成	法に準拠			
		ッンチレ	ジージョ	ン計数装置	運流	容器:3m(シベイアル							
	ر ا					時間:200	分(50分)	10 回測定)						

※1:小川原湖 ※2:尾駮沼、鷹架沼

担	П	丰	*************************************	Ш	*	道	燃杉	株井	计	女	
<u> </u>	П	測 定 装 置	測 定 方 法	測定装置			演(迅	升	뇄	
		・低バックグラウンド2ヵガス	測定法:文部科学省編「放射性ストロンチウム分析法」	• 同 左							
放射化	放射化学分析	フロー計数装置	(平成15年改訂) に準拠								
$^{-6}S_{\Gamma}$			測 定 容 器:25 mm φ ステンレススチール皿								
			測定時間:60分								
		・シリコン半導体検出器	測定法:文部科学省編「プルトニウム分析法」(平成2	• 司 左	運流		: 文部	科学省	論「	パルトニ	法: 文部科学省編「プルトニウム分
			年改訂)				析法」] (平月	成2年	析法」(平成2年改訂)	
放射化	放射化学分析		文部科学省編「ウラン分析法」(平成 14 年改				文部	年平金	「編」	ナブング	文部科学省編「ウラン分析法」
$^{239+240}\mathrm{Pu}$							(平)	戎 14 ⁴	(平成 14 年改訂)		
234U, 235U, 238U	$J_{\star}^{238}U$		文部科学省編「アメリシウム分析法」(平成 2				文部	平学省	「温」	パブブ	文部科学省編「プルトニウム・
²⁴¹ Am			年)に準拠				XX	リシウ	ム溶浴	分析法	アメリシウム逐次分析法」(平成
²⁴⁴ Cm							2年)	2年)に準拠	赵		
			測定用電着板:25 mm φ ステンレススチール製		測定用	測定用電着板:同	同 左	4.1			
			測定時間:90,000秒		測定時間:同	時組	:同 左	1.1			
小 # #	4 0 余 0 1 4 4	・低バックグラウンド2ヵガス	測 定 法:文部科学省編「ヨウ素-129 分析法」(平成 8	同左							
ルメ オソ コロ 1291		フロー計数装置	年)に準拠								
T			測定時間:100分								

Г		_									
日木百条种计分块	4 所 然 は 対	測 定 装 置 測 定 方 法	•同 左								
村		演定方法	測 定 法:文部科学省編「放射性ヨウ素分析法」(平成8	年改訂)に準拠	測定試料形態:活性炭吸着物	(捕 集 村:活性炭カートリッジ)	大気吸引量:約 50 0/分	捕集時間:168時間	吸引口位置:地上1.5~2.0 m	测定容器:U-8容器	測定時間:80,000秒
#10		測定装置	・ゲルマニウム半導体検出器								
	四					機器分析	ッ線放出核種	(大気中の 1311)			

(3) 環境試料中のフッ素

旧日			丰		森	肖			₩ Н	日本原燃株	然 株 式	. 会 社	41
	測	定	採	鮰)	定方	뇄		— 河	無 開	戸	定方	郑
大気中の気体状	トニチ 引子・				測 定 法: 湿式捕	法:湿式捕集双イオン電極法	1極法	•] 左				
ファ素					測定周期:8時間								
	・イオンメータ				■ 所 法:「JIS K	法: [JIS K 0102 工場排水試驗方法]	水試驗方法」	•	一左				
					一人人	-大気汚染物質測定法指針-	[法指針]						
					(昭和	63年3月環	(昭和63年3月環境庁大気保全局)						
					「環境」	測定分析法註	環境測定分析法註解」(昭和60年環境						
ファ素						庁企画調整局研究調整課監修)	調整課監修)						
						試験方法とそ	底質試験方法とその解説」(昭和63年						
						環境庁水質保	改訂環境庁水質保全局水質管理課編)						
					(衛生	試験法・注解	「衛生試験法・注解」(2005年日本薬学						
						会編)に準拠							

(4) 気 象

項目	=	青森	県	日本原灯	然株式会社
4 月	╛	測 定 装 置	測 定 方 法	測定装置	測定方法
風向・風	1.油	・風向風速計[プロペラ型]	測 定 法:指針※に準拠	 ・同 左	測 定 法:同 左
風川 畑	北 灰	(気象庁検定付)	測定位置:地上約 10 m		測定位置:同 左
気	温	・温度計[白金測温抵抗式]	測 定 法:指針*に準拠	 ・同 左	測定法:同左
×(1.1111.	(気象庁検定付)	測定位置:地上約2 m		測定位置:同 左
降水	量	· 雨雪量計[転倒升方式]	測 定 法:指針*に準拠	 ・同 左	測 定 法:同 左
一件 小	里	(気象庁検定付)	測定位置:地上約2 m		測定位置:同 左
感	雨	・感雨雪器[電極式]	測 定 法:指針*に準拠	 ・同 左	測 定 法:同 左
/EX	RM	"然的目前[电型人]	測定位置:地上約2、6 m		測定位置:地上約2 m
積 雪	深	・積雪計[レーザー式]	測 定 法:指針*に準拠	・積雪計[超音波式]	測 定 法:同 左
(限 ヨ	休	(気象庁検定付)	測定位置:地上約3 m	(気象庁検定付)	測定位置:同 左
日射	量	・日射計[熱電対式]	測 定 法:指針*に準拠	 ・同 左	測 定 法:同 左
H 31	里	(気象庁検定付)	測定位置:地上約10 m	1 PJ /L	測定位置:同 左
┃ ┃ 放射収支	, =	・放射収支計[熱電対式]	測 定 法:指針*に準拠	 ・同 左	測 定 法:同 左
//X314X_X	里	"	測定位置:地上約2 m		測定位置:同 左
		•湿度計	 測 定 法:指針*に準拠	 ・湿度計[静電容量式]	 測 定 法:同 左
湿	度	[静電容量式](尾駮) [毛髪式](千歳平)			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		(気象庁検定付)	測定位置:地上約2 m	(気象庁検定付)	測定位置:同 左
大気安定	彦		測 定 法:指針*に準拠	_	測定法:同左

※:「発電用原子炉施設の安全解析に関する気象指針」(平成13年改訂 原子力安全委員会)

(5) モニタリングカーによる測定

項	目		青			森		県	
	Р	測	定	装	置	測	定	方	法
		$2'' \phi \times 2'$	" NaI(Tl)	シンチレ	ーション	測 定 法:			
		検出器(注	且度補償	方式加温	装置付)	定点測定	10 分間	測定	
かりません	空間放射線量率		G(E)関数荷重演算方式			走行測定	10 秒間(の測定値	を 500 m ごと
空间放射	7 禄 里 半					に平均			
							走行速度	度 30~60	km/h
						測定位置: 均	也上 3.2 m	(車両上)	

3. 環境試料中の放射能測定対象核種

 $^{54}\text{Mn}, ^{60}\text{Co}, ^{106}\text{Ru}, ^{134}\text{Cs}, ^{137}\text{Cs}, ^{144}\text{Ce}, ^{7}\text{Be}, ^{40}\text{K}, ^{214}\text{Bi}, ^{228}\text{Ac}, ^{3}\text{H}, ^{14}\text{C}, ^{90}\text{Sr}, ^{239+240}\text{Pu}, \text{U}, ^{241}\text{Am}, ^{244}\text{Cm}, ^{129}\text{I}, ^{131}\text{I}$

なお、²¹⁴Bi、²²⁸Ac については、土試料のみとする。

上記核種以外で次の核種が検出された場合は、報告書の備考欄に記載する。

⁵¹Cr, ⁵⁹Fe, ⁵⁸Co, ⁶⁵Zn, ⁹⁵Zr, ⁹⁵Nb, ¹⁰³Ru, ¹²⁵Sb, ¹⁴⁰Ba, ¹⁴⁰La, ¹⁵⁴Eu

4. 数値の取扱方法

(1) 空間放射線量率

単位		表	示	方	法		
nGy/h	整数で示す。						

(2) 積算線量

単位	表示方法
μ Gy/91 日 μ Gy/365 日	3箇月積算線量は、測定期間の測定値を91日当たりに換算し、整数で示す。年間積算線量は、各期間の測定値を合計した後、365日当たりに換算し、整数で示す。

(3) 大気浮遊じん中の全α及び全β放射能

単 位	表 示 方 法
	有効数字2桁で示す。
	測定値がその計数誤差の3倍以下の場合検出限界以下とし「*」と表示する。
mBq/m^3	平均値の算出においては、測定値に検出限界以下のものが含まれる場合、そのと
	きの検出限界値を測定値として算出し、平均値に「<」を付ける。全ての測定値
	が検出限界以下の場合、平均値も検出限界以下とし「*」と表示する。

(4) 大気中の気体状β放射能

単位	表示方法
	クリプトン-85 換算濃度として、有効数字 2 桁で示す。最小位は 1 位。
	定量下限値は「2 kBq/m³」とし、定量下限値未満は「ND」と表示する。
kBq/m³	平均値の算出においては、測定値に定量下限値未満のものが含まれる場合、定量
	下限値を測定値として算出し、平均値に「<」を付ける。全ての測定値が定量下
	限値未満の場合、平均値も定量下限値未満とし「ND」と表示する。

(5) 環境試料中の放射性核種

	痯	₹	米	¥		単	Ĭ	位		表	示	方	法
大	気	浮	遊	じ	ん		mBq/	m^3					
			(7.	k 蒸 ź	気 状	mBq/n	n³ (大	気中濃度)					
大		気	トリ	チゥ	ム)	Bq/ℓ	(水	分中濃度)					
			(日	ウ	素)		mBq/	$^{\prime}\mathrm{m}^{3}$			7 0 1/2 ~	<u>-</u> -	目工學派
降		下			物		Bq/ı	m^2					最小位は
雨					水		Bq/	′Q			見値の最		-
र्भा। -	77 كاس	7-14 -14 13	⋵ ⊸k →	+=-	海水		mBq	/0			見値は別 見値去過		-小り。 ID」と表
刊力リノ	水、 俯作	7水、水道	韭バ、 ナ	+尸水、	、一一一	(3H	HはB	$\mathrm{Sq}/\mathrm{\ell})$		ェ里 下門 でする。	以但不何	可(イー)、	ND」と衣
河底	土、油	胡底土、	表士	二、海	底土		Bq/kg	g乾		, - 0	色は記載	ti 7al	`
							Bq/kg	g生	Р	一致於石	こ(より山男	(U/4 V	' 0
農 謹	音 産 4	物 、淡	水道	産 食	品、	(牛乳は B	3q/ℓ,	魚類の ³H に	ţ				
海	産 食	品、	指	標生	三 物	Bq/kg 生	及び	Bq/ ℓ, ¹4C Ø					
						比放射能	Eは Bo	_l /g 炭素)					

環境試料中のフッ素 9

定 (牛乳は mg/0) mg/kg 生 別表2 環境試料中のフッ素の定量下限値 mg/kg 乾 $\mu \ \mathrm{g/m}^3$ mg/0qdd 表土 農畜産物、淡水産食品 溪 长 大気(気体状フッ素:HF モニタ) 恕 遊底上、 较 挺 私 河川水 河底土、 有効数字2桁で示す。最小位は定量下限値 定量下限値未満は「ND」と表示する。 洴 定量下限値は別表2に示す。 书 长 表 の最小の位。 (牛乳はmg/0) mg/kg 生 mg/kg 乾 $\mu \mathrm{g}/\mathrm{m}^3$ 単位 mg/ℓ qdd 表土 鬞 长 農畜産物、淡水産食品 大気(気体状フッ素:HF モニタ) 낊 遊原上、 蘣 卖 **长** 絋 河原土、 河川

画

照

1

쁴

0.03 0.04 0.1

・大気:粒子状フッ素及びガス状フッ素の合計。

・大気:粒子状フッ素及びガス状フッ素の合計。

0.1

2

別表 1 環境試料中の放射性核種の定量下限値

4	≡ ℓ 													
2440		ı	ı	ı	ı	ı	ı	ı	ı	0.04	0.04	I		1
241 A 24		ı	ı	ı	1	ı	ı	ı	ı	0.04	0.04	ı		1
	 >	0004	ı	ı	1	0.008	ı	2	2	8.0	8.0	0.02		1
239+240D.,	2	0.0002 0.0004	ı	ı	ı	0.004	ı	0.02	0.02	0.04	0.04	0.002		-
1311		1	ı	ı	0.2	1	ı	I	ı	ı	1	1		1
1291	-	ı	ı	ı	1	ı	ı	ı	ı	5	1	1		-
- S06	Z	0.004	ı	ı	1	0.08	ı	0.4	2	0.4	0.4	0.04		ı
	ر	ı	ı	ı	1	ı	ı	I	ı	ı	ı	2		0.004
3.17	Ľ,	ı	40	2	ı	ı	2	2	2	ı	ı	2		-
	²²⁸ Ac	ı	ı	ı	1	ı	ı	I	ı	15	20	1		-
	²¹⁴ Bi	ı	ı	ı	ı	ı	ı	I	ı	∞	10	1		ı
種	40K	0.3	ı	ı	ı	4	ı	100	ı	40	09	9		1
葱	$^{7}\mathrm{Be}$	0.2	ı	ı	ı	2	ı	100	100	30	40	9		_
丑	¹⁴⁴ Ce	0.1	ı	ı	ı	П	ı	30	30	∞	15	1.5		_
放	¹³⁷ Cs	0.02	ı	ı	I	0.2	I	9	9	3	4	0.4		-
緞	$^{134}\mathrm{Cs}$	0.02	ı	ı	ı	0.2	ı	9	9	3	4	0.4		_
γ	¹⁰⁶ Ru	0.2	ı	ı	1	2	1	09	09	20	30	4		_
	₆₀ Co	0.02	I	ı	ı	0.2	ı	9	9	3	4	0.4		Ι
	$^{54}\mathrm{Mn}$	0.02	ı	ı	ı	0.2	ı	9	9	3	4	0.4		I
北		mBq/m³	mBq/m³(大気中濃度)	Bq/0(水分中濃度)	mBq/m³	$\mathrm{Bq/m}^2$	Bq/ø	mBq/8	(3/bg +) H.)	D _ /1 _ 也	7世 8 y / bg	Bq/kg 生 (牛乳はBq/ℓ、魚類の fi	は Bq/kg 生及び Bq/0)	Bq/g 炭素
<u>;</u>		大気浮遊じん	大 (水蒸気状	トリチウム)	(ヨウ素)	降 下 物	雨	河川水、湖沼水*1、水道水、井戸水	海水、湖沼水*2	河底土、海底土、表土	湖 底 上	農畜産物、淡水産食品、	海産食品、指標生物	

※1:小川原湖 ※2:尾駮沼、鷹架沼

・U は 234U、 235U 及び 238U の合計。

・魚類 (ヒラメ等) 中の3Hは、自由水中の3H。

5. 試料の採取方法等

		試	Ħ	料			採 取 方 法 等
大	気	浮	ì	斿	じ	ん	ろ紙(HE-40T)に集じんする
大気	中の	水蒸	気場	大 卜 !	リチヮ	ウム	モレキュラーシーブ等に捕集する。
大	気	中	の	丑	ウ	素	活性炭カートリッジに捕集する。
大	気	中	の	フ	ツ	素	メンブランフィルター及びアルカリろ紙に捕集する。
降			下			物	大型水盤で採取する。
雨						水	降水採取器で採取する。
河	Ш	水	`	湖	沼	水	表面水を採取する。
水	道	水	`	井	戸	水	給水栓等から採取する。
河	底	土	`	湖	底	土	表面底質を採泥器等により採取する。
表						土	表層 (0~5 cm) を採土器により採取する。
牛						乳	原乳を採取する。
精						米	モミ又は玄米を精米して試料とする。
ハ;	クサ	・ イ	`	キー	ャベ	ツ	葉部を試料とする。
ダイ	コン、	・ナメ	ガイモ	こ、バ	レイ:	ショ	外皮を除き、ダイコン及びナガイモは根部を、バレイショは塊 茎部を試料とする。
牧						草	地上約 10 cm の位置で刈り取る。
松						葉	二年生葉を採取する。
海						水	表面海水を採取する。
海			底			土	表面底質を採泥器により採取する。
ワメ	1 サ	ギ、	ヒ	ラツ	メカ	<i>i</i> =	全体を試料とする。
ヒラ	ラメ	, ,	カレ	イ	、イ	カ	頭、骨、内臓を除き、可食部を試料とする。
ア			ワ			ビ	貝殻、内臓を除き、軟体部を試料とする。
ホタ	テ、シ	/ジミ	、ムラ	ラサキ	ーイガー	イ等	貝殻を除き、軟体部を試料とする。
コ	ン	ブ、	チ	ーガ	イ	ソ	根を除く全体を試料とする。
ウ						=	殻を除き、可食部を試料とする。

- 86 -		86	
--------	--	----	--

5. 空間放射線等測定地点図 及び環境試料の採取地点図

図 1 空間放射線量等測定地点図

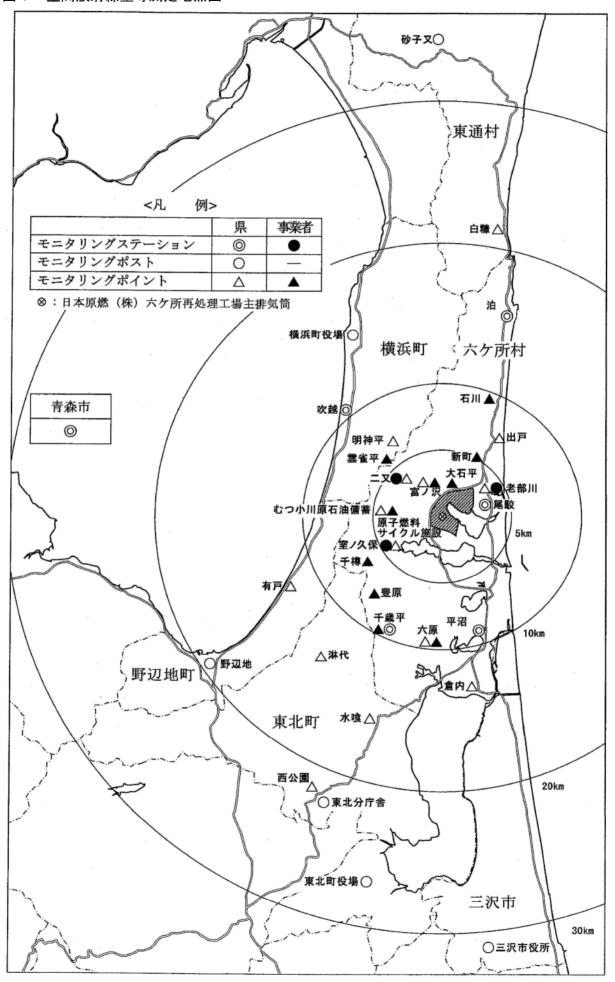
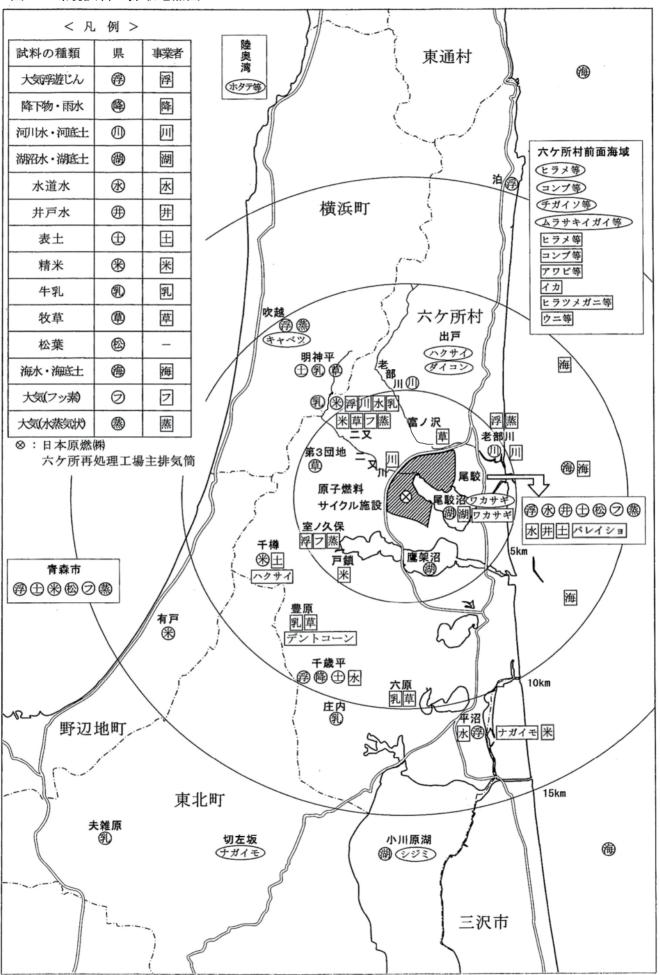
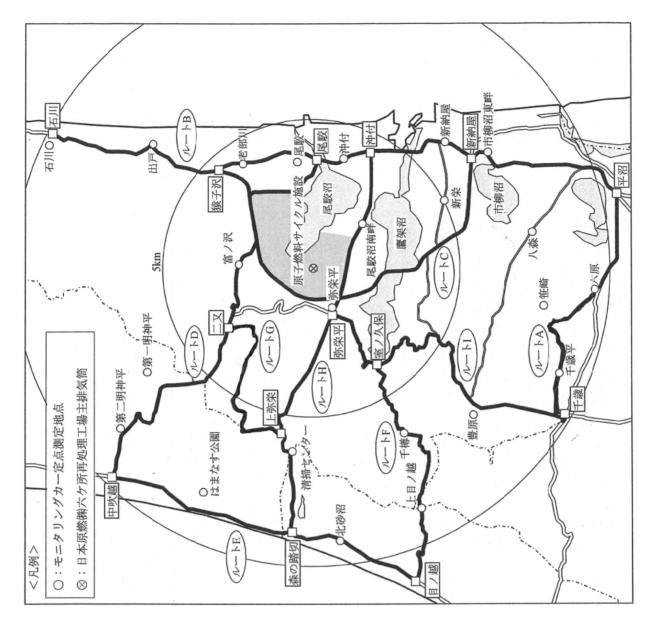




図2 環境試料の採取地点図

	項測													뫇	0	E	放	‡		獭	ф	4	粉											
	頻測															B	1	*	單	1	曲													
	定地点	地点名	石川	出戸	老部川	尾駮	沖付	新納屋	新栄	市柳沼東畔	八森	六原	笹崎	千歲平	豊原	千樽	尾駮沼南畔	弥荣平	清掃センター	富ノ沢	第一明神平	第二明神平	はまなす公園	上目ノ越	北砂沼	青森市	千歳~平沼	B)平沼~石川	C)猿子沢~新納屋	D)尾駮~中吹越	E)中吹越~目/越	目ノ越~室ノ久保	二又~上班	H)森の踏切~沖付 D路米形(井井
施)	河	市町村									六ケ所村											横浜町		野江地町	1 0 × 5 × 6 ×	青森市	(N1-A)	(パートB)	()2 Y -74)	(U \11)	(アート区)	(パートF)	(アート G)	田イーなり
(県実施)	区									,			护	Į.	乓															#	! !	Ĥ		

東通原子力発電所

表中の記号(資料 3. 東通原子力発電所の運転状況を除く)

モニタリング対象外を示す。

△: 今四半期の分析対象外を示す。

ND: 定量下限値未満を示す。分析室等で実施する環境試料中放射性 核種の分析測定については、測定条件や精度を一定の水準に保つ ため、試料・核種毎に定量下限値を定めている(東通原子力発電所 に係る環境放射線モニタリング実施要領 4.数値の取扱方法(5)別 表 1 参照)。

*: 検出限界以下を示す。モニタリングステーションにおいて自動的に採 取・測定している大気浮遊じん中の全ベータ放射能については、測 定条件(採取空気量等)が変動するため、測定値が計数誤差の3倍 以下の場合を検出限界以下としている。

#: 平常の変動幅を外れた測定値を示す。

1 調査概要

(1)実施者

青森県原子力センター 東北電力株式会社

(2)期間

平成 28 年 10 月~12 月 (平成 28 年度第 3 四半期)

(3)内容

調査内容は、表 1-1、表 1-2(1)及び表 1-2(2)に示すとおりである。

(4) 測定方法

『東通原子力発電所に係る環境放射線モニタリング実施要領』による(「資料」参照)。

表 1-1 空間放射線

測	定項	目	測定頻度	地					点		数
1月1	企	Н		区					分	青森県	事業者
空間	モニタリングステ	ーション	連続	施	設	周	辺	地	域	3	_
放 射	モニタリング	ポスト	連続	施	設	周	辺	地	域	8	2
線	モニタリングカー	定点測定	1 回/3 箇月	施	設	周	辺	地	域	9	_
量 率		走行測定	1 回/3 箇月	施	設	周	辺	地	域	4 ルート	_
	ID /ァトス 4字	算線量	3 箇 月	施	設	周	辺	地	域	18	6
R P	LD による積	算線量	積 算	比輔	交対 原	照(む	つ市	川内]町)	1	_

表 1-2(1) 環境試料中の放射能(モニタリングステーション)

									地				Ą	点		数
試	料	\mathcal{O}	種	類	測	定	頻	度	青				Ā	茶		県
								,	全	β	放	射	能	ョゥ	素 -	1 3 1
1/10	公周辺地域	大 気	浮遊じ	ん	1	回/	3 時	計間			3				_	
	又问火业心纵	大		気	1	旦	/	週			_				3	

空間放射線量率測定器、ダストモニタ等の連続モニタ及び積算線量計を備えた野外測定設備

空間放射線量率測定器及び積算線量計を備えた野外測定設備

•モニタリングポイント

積算線量計を備えた野外測定設備

[•]モニタリングステーション

[・]モニタリングポスト

表1-2(2) 環境試料中の放射能及びフッ素(機器分析等)

					Τ	青		k	県			事	業	者	
					地		検	体	数		地	検		<u> </u>	数
						γ	日	7	ス	プ		γ	彐	<u>۲</u>	ス
						線	_	IJ	トロ	ル		線		IJ	ト
試	料		の 和	重 類	<u></u>	放	ウ	9	ン	<u>۱</u>	上	放	ウ)	ロン
					点		主	チ	チ		点		丰	チ	チ
						出	素	ゥ	ウ	=		出	素	ゥ	ウ
						核			ム 	ウ		核	1		ム
					数	種	131	ム	90	ム	数	種	131	ム	90
	大	気	浮 遊	じん	3	9	_	-	-	-	2	6	_	-	-
	降		下	物	1	3	-	1	\triangle	Δ	1	3	_	-	Δ
	河		JII	水	1	1	_	1	-	-	-	-	_	-	-
陸	水		道	水	4	4	_	4	-	-	3	3	_	3	-
	井		戸	水	Δ	Δ	_	Δ	-	-	Δ	Δ	_	Δ	-
	表			土	Δ	Δ	_	-	-	Δ	Δ	Δ	_	-	-
上	精			米	2	2	_	-	2	-	2	2	_	-	2
			バレ・	イショ	Δ	Δ	_	-	Δ	-	Δ	Δ	_	-	Δ
試	m=		ダイ	コン	2	2	_	-	2	-	1	1	_	-	1
II-V	野	菜	ハクサイ、	キャベツ	Δ	\triangle	Δ	-	Δ	-	2	2	2	-	2
			アブ	ラ ナ	Δ	Δ	Δ	-	Δ	_	-	_	_	_	_
料	牛	乳	(原	乳)	2	2	2	_	2	-	2	2	2	-	2
	牛				\triangle	Δ	_	_	Δ	_	_	_	_	_	_
	牧			———— 草		\triangle	Δ	_	_	_	\triangle	Δ	_	_	_
	指標	生物	松	葉	-	1	_	_	1	_	2	2	1	_	2
	海	1.1/7	124		+	Δ	_	Δ	_	_	2	2	_	2	_
	海		 底		-	\triangle	_	_	_	Δ	\triangle	\triangle		_	_
	海	魚		<u></u>								$\overline{}$			
	""			ノイ											
			ウスァ		2	2	_	_	2	_	\triangle	\triangle	_	_	Δ
海			コ ウ	ナゴ	1										
	産	<u>類</u> 貝	アイ	ナメ	-										
洋				タテ	1	1	_	_	1	1	Δ	Δ	_	_	Δ
試		類	ア	フ ビ	<u> </u>										
料	食	海藻	,	/ ブ		^	_				1	1	1	_	1
14		漢 類	コン	,)		\triangle	Δ	_	\triangle		1	1	1	_	1
		ルマ	タ	コ	1	1	_	_	1	_	_	_	_	_	_
	品	他の	ウ	=	 	_	_	_	_	_	\triangle	Δ	_	_	Δ
		I	チガ	イソ	 	_	_		_	_	 1	1		_	1
	指標	生物		<u>- ' _ ′</u> キイガイ		Δ	_	_	Δ	Δ		_		_	_
む 比つ	表			土	\triangle	\triangle	_	_	_	Δ	_	_	_	_	_
比つ較市															
対川					 										
照内町	 指標	雲生物	松	葉	1	1	_	_	1	_	_	_	_	_	_
— щ — — — — — — — — — — — — — — — — — —		* -		<i>></i> R	1				-						
	1		計		21	29	2	5	12	1	19	25	6	5	11
			μl		²¹			49			13		4	7	

[・]プルトニウムはプルトニウム-239+240である。

2 調査結果

平成 28 年度第 3 四半期(平成 28 年 10 月~12 月)における環境放射線の調査結果は、これまでと同じ水準**であった。

東通原子力発電所からの影響は認められなかった。

(1) 空間放射線

モニタリングステーション、モニタリングポスト及びモニタリングカーによる空間放射線量率測定並びに RPLD(蛍光ガラス線量計)による積算線量測定を実施した。

① 空間放射線量率(NaI)

(a) モニタリングステーション(図 2-1)及びモニタリングポスト(図 2-2)

各測定局における今四半期の平均値は $17\sim 25~{\rm nGy/h}$ 、最大値は $47\sim 101~{\rm nGy/h}$ 、最小値は $14\sim 20~{\rm nGy/h}$ であり、月平均値は $17\sim 26~{\rm nGy/h}$ であった。

平常の変動幅^{※2}を上回った測定値は、すべて降雨等^{※3}によるものと考えられる。このうち、砂子又局、古野牛川局、尻労局、桜木町局及び関根局において過去の測定値^{※4}の範囲を上回った測定値があったが、降雨雪とともに落下した天然放射性核種の影響と考えられる。

(b) モニタリングカー(図 2-3)

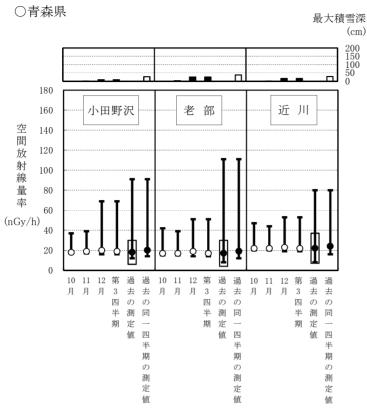
定点測定における測定値は $11 \sim 20 \text{ nGy/h}$ 、走行測定における測定値は $11 \sim 22 \text{ nGy/h}$ であり、過去の測定値 *4 の範囲内であった。

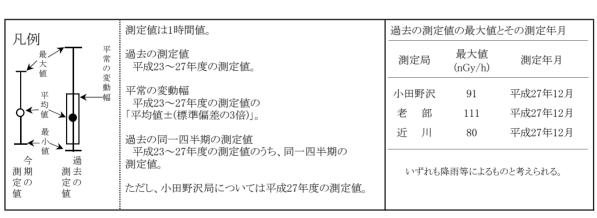
② RPLD による積算線量(図 2-4)

測定値は86 $\sim 107~\mu$ Gy/91 日 であり、すべて平常の変動幅の範囲内であった。

※1:「(概ね)これまでと同じ水準」

^{・「}これまでと同じ水準」は、測定結果について、平常の変動幅の範囲内である場合及び範囲を外れた要因が、降雨、降雪等の気象要因、 医療・産業に用いる放射性同位元素の影響等と判断される場合を示す。


^{・「}概ねこれまでと同じ水準」は、県内外の原子力施設からの影響により、一部の測定値が平常の変動幅を上回ったが、全体的にはこれまでと同じ水準(住民等の線量が法令に定める周辺監視区域外の線量限度(年間1ミリシーベルト)を十分に下回るような水準にあること)と判断される場合を示す。


^{※2:「}平常の変動幅」は空間放射線量率(モニタリングステーション及びモニタリングポスト)については「過去の測定値」の「平均値±(標準偏差の3倍)」。RPLDによる積算線量については「過去の測定値」の「最小値~最大値」。

^{※3:「}降雨等」とは、「降雨、降雪、雷雨、積雪等の気象要因及び地理・地形上の要因等の自然条件の変化」、「医療・産業に用いる放射性同位元素等の影響」、「国内外の他の原子力施設からの影響」などである。空間放射線量率は、降雨雪時に雨や雪に取り込まれて地表面に落下したラドンの壊変生成物の影響により上昇し、積雪により大地からの放射線が遮へいされることにより低下する。また、医療・産業に用いる放射性同位元素等の影響により測定値が上昇することがある。

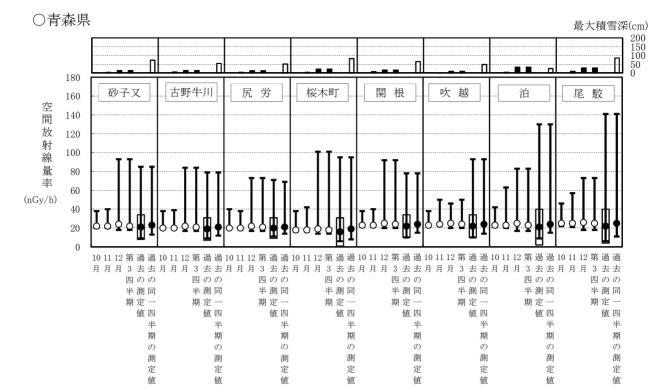
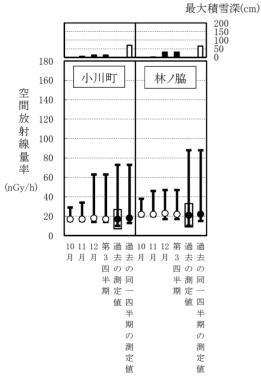

^{※4:「}過去の測定値」は、空間放射線については前年度までの5年間(平成23~27年度)の測定値。

図2-1 モニタリングステーションによる空間放射線量率(NaI)測定結果



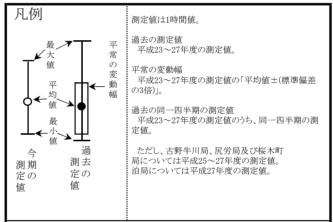
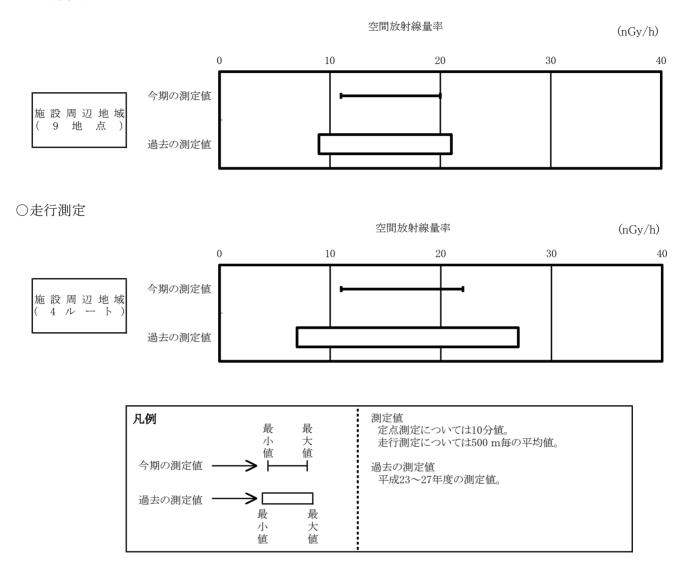
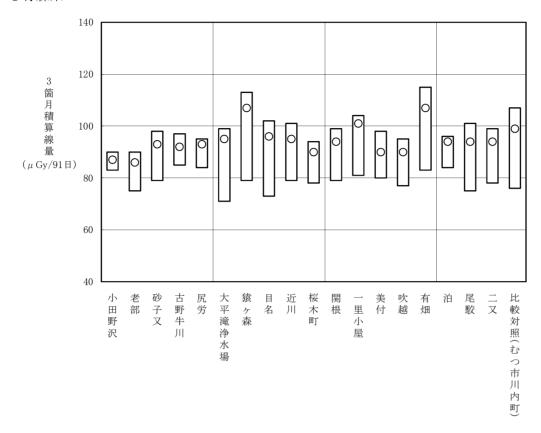


図2-2 モニタリングポストによる空間放射線量率(NaI)測定結果

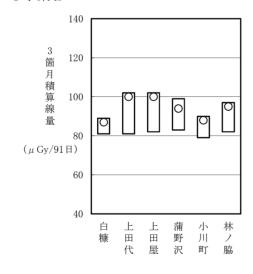
○事業者

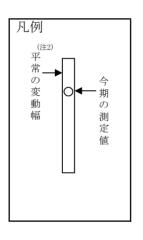


過去の測算	定値の最力	大値とその測定年	.月		
	青 森	県		事 業	者
測定局	最大値 (nGy/h)	測定年月	測定局	最大値 (nGy/h)	測定年月
砂子又	85	平成24年12月	小川町	73	平成23年12月
古野牛川	79	平成27年12月	林ノ脇	88	平成27年12月
尻 労	71	平成25年8月		降雨等によ	るものと考えられ
桜木町	95	平成27年12月	る。		
関 根	78	平成27年12月			
吹 越	93	平成27年12月			
泊	130	平成27年12月			
尾 駮	141	平成27年12月			
			_		


図2-3 モニタリングカーによる空間放射線量率測定結果

○定点測定




図2-4 RPLDによる積算線量測定結果(注1)

○青森県

○事業者

(注1) 測定値は宇宙線の一部及び自己照射の線量を含む。

(注2)「平常の変動幅」は平成23~27年度の3箇月積算線量の測定値の「最小値~最大値」。

ただし、小田野沢及び泊については平成27年度、古野牛川、尻労及び桜木町については平成25~27年度、白糠については平成26~27年度の3箇月積算線量の測定値の「最小値~最大値」。

(2)環境試料中の放射能

大気浮遊じん中の全 β (ベータ)放射能測定、大気中のヨウ素-131 測定、機器分析及び放射化学分析を実施した。

- ① 大気浮遊じん中の全 β 放射能測定³⁶(表 2-1) 測定値は $0.14 \sim 5.7 \, \mathrm{Bq/m^3}$ であり、平常の変動幅³⁶の範囲内であった。
- ② 大気中のヨウ素-131 測定(表 2-2) 測定値はこれまでと同様にすべて ND であった。
- ③ 機器分析及び放射化学分析

γ (ガンマ)線放出核種及びヨウ素-131 については、ゲルマニウム半導体検出器による機器分析を、トリチウム、ストロンチウム-90 及びプルトニウムについては、放射化学分析を実施した。

- γ線放出核種分析(表 2-3)セシウム-137の測定値は、すべてNDであり、平常の変動幅の範囲内であった。その他の人工放射性核種についても、すべてNDであった。
- ヨウ素-131 分析(表 2-4) 測定値はすべて ND であり、平常の変動幅の範囲内であった。
- トリチウム分析(表 2-5)測定値はすべて ND であり、平常の変動幅の範囲内であった。
- ストロンチウム-90分析(表 2-6)
 ダイコンが ND ~ 0.21 Bq/kg 生、ハクサイ・キャベツが 0.08、0.13 Bq/kg 生、松葉が 0.05 ~ 4.0
 Bq/kg 生、その他はすべて ND であり、平常の変動幅の範囲内であった。
- プルトニウム分析(表 2-7)アワビが 0.014 Bq/kg 生であり、平常の変動幅の範囲内であった。

^{※5:3}時間集じん終了直後10分間測定。

^{※6:「}平常の変動幅」は、環境試料中の放射能については、調査を開始した年度から前年度までの測定値の「最小値~最大値」。

表 2-1 大気浮遊じん中の全β放射能測定結果

(単位:Bq/m³)

実施者	測	Į	È	局	測		定		値	平	常	の	変	動	幅
青	小	田	野	沢		0.18	~	4.4			*	: ~	9.1		
森	老			部		0.18	~	4.6			0.0	12 ~	9.9		
県	近			Щ		0.14	~	5.7			*	: ~	12		

^{・3} 時間集じん終了直後 10 分間測定。

表 2-2 大気中のヨウ素-131 測定結果

(単位:mBq/m³)

実施者	測	気	È	局	定量	下	限	値	測	定	値	平	常	の	変	動	幅
青	小	田	野	沢						ND				N	D		
森	老			部		20				ND				N	D		
県	近			Ш						ND				N	D		

^{・「}平常の変動幅」は平成15~27年度の測定値の「最小値~最大値」。

^{・「}平常の変動幅」は平成15~27年度の測定値の「最小値~最大値」。

表 2-3 γ 線放出核種分析結果

								セ	シウ・	ム - 13	37	
試	料の	種	類	単 位	定量 下限値	青	森	県	事	業	者	ではる本料は
					LINIE	検体数	測定	値	検体数	測定	値	平常の変動幅
陸	大気	浮遊じ	λ	mBq/m³	0.02	9	ND)	6	ND		ND
	降下物	勿(月間	引)	Bq/m ²	0.2	3	ND)	3	ND		ND \sim 0.2
	河	Ш	水			1	ND)	_	_		ND
	水	道	水	mBq∕0	6	4	ND)	3	ND		ND
	井	戸	水			\triangle			\triangle	\triangle		ND
上	表		土	Bq/kg 乾	3	\triangle	\triangle		\triangle	\triangle		ND \sim 47
	精		米			2	ND)	2	ND		ND
	野バ	レイシ	/ 3			\triangle	\triangle		\triangle	\triangle		ND \sim 0.5
	ダ	イコ	ン	Bq/kg 生	0.4	2	ND)	1	ND		ND
試		サイ、キャ	ベツ			\triangle	\triangle		2	ND		ND
	菜ア	ブラ	ナ			\triangle	\triangle		_	_		ND
		L(原豸		Bq∕ℓ	0.4	2	ND)	2	ND		ND
	牛		肉			\triangle	\triangle		_	_		ND
ylal	牧		草	Bq/kg 生	0.4	\triangle	\triangle		\triangle	Δ		ND \sim 2.8
料	指標生物	松	葉			1	ND)	2	ND		ND
海	海		水	mBq∕ℓ	6	\triangle	Δ		2	ND		ND
	海	底	土	Bq/kg 乾	3	\triangle	Δ		\triangle	\triangle		ND
	海ーヒラ	メ、カレ	イ、									
洋	ウス	メバル、	コウ			2	ND)	\triangle	\triangle		ND
 (+	産ーナニ	ゴ、アイコ	ナメ									
	ホク	タテ、アワ	フビ			1	ND)	\triangle	Δ		ND
	食コ	ン	ブ	Bq/kg 生	0.4	\triangle	Δ		1	ND		ND
試	タ		コ			1	ND)	_	_		ND
	品ウ		11			_	_		\triangle	Δ		ND
	指標チ	ガイ	ソ			_	_		1	ND		ND
料		ラサキイス	ガイ			Δ	Δ		_	_		ND
(むつ市川内町)	表		土	Bq/kg 乾	3	Δ	Δ		-	_		7 ~ 11
対照	指標生物	松	葉	Bq/kg 生	0.4	1	NE)	_	_		ND
	計			_	_	29	_		25	_		_

[•]測定対象核種はマンガン-54、鉄-59、コバルト-58、コバルト-60、セシウム-134、セシウム-137、ベリリウム-7、カリウム-40、 ビスマス-214、アクチニウム-228。

^{・「}平常の変動幅」は平成 15~27 年度の測定値の「最小値~最大値」。「ヒラメ、カレイ、ウスメバル、コウナゴ、アイナメ」及び「ホタテ、アワビ」については平成元~27 年度の測定値の「最小値~最大値」。ただし、東京電力ホールディングス(株)福島第一原子力発電所の事故の影響が考えられる測定値については平常の変動幅の設定に用いていない(平成 22 年度報 付 10、平成 23 年度報 付 16、平成 24 年度報 付 10、平成 25 年度報 付 7 及び平成 26 年度報 付 5 参照)

表 2-4 ヨウ素-131 分析結果

試	料の	種 類	単 位	定量下限値	青 ₄ 検 体 数	集 県 測定値	事	業 者 測定値	平常の変動幅
	野ハクサ	イ、キャベツ	D = /1- = #	0.4	\triangle	\triangle	2	ND	ND
陸		ブラナ	Bq/kg 生	0.4	\triangle	\triangle	-	_	ND
上試	牛乳(原乳)	Bq∕ℓ	0.4	2	ND	2	ND	ND
料			D = /1- = #	0.4	Δ	Δ	_	_	ND
	指標生物 松 葉		Bq/kg 生	0.4	_	_	1	ND	ND
海洋試料	海産食品	コンブ	Bq/kg 生	0.4	Δ	Δ	1	ND	ND
	計		_	_	2	_	6	_	_

^{・「}平常の変動幅」は平成 15~27 年度の測定値の「最小値~最大値」。ただし、東京電力ホールディングス(株)福島第一原子力発電所の事故の影響が考えられる測定値については平常の変動幅の設定に用いていない(平成 23 年度報 付 16 参照)。

表 2-5 トリチウム分析結果

4.5	式料の種類		5 WE	774	/ _ -	定量	青	集 県	事	業 者	平常の	参考
訊	科	(/) 档	1 類	単	位	下限値	検体数	測定値	検体数	測定値	変動幅	過去の測定 値 の 範 囲
陸	河	Ш	水				1	ND	_	_	ND	ND
上 試	水	道	水				4	ND	3	ND	ND	ND
料	井	戸	水	Bq/	′n	2	\triangle	\triangle	\triangle	\triangle	ND	ND
海洋試料	海		水	DQ/	V.	Δ ,	Δ	Δ	2	ND	ND	ND ~ 4
		計		_		-	5	_	5	_	-	-

^{・「}平常の変動幅」は平成15~27年度の測定値の「最小値~最大値」。ただし、再処理工場のアクティブ試験による影響が考えられる測定値については、平常の変動幅の設定に用いていない。

^{・「}過去の測定値の範囲」は平成15~27年度の測定値の「最小値~最大値」(再処理工場のアクティブ試験の影響と考えられるものを含む)。

表 2-6 ストロンチウム-90 分析結果

4.5	NOI.		11	北江	77 17	定量	青	森		県	事	業		者	五件の本利は
試	料	0)	種	類	単位	下限値	検体数	測	定	値	検体数	測	定	値	平常の変動幅
陸		下物	(年	間)	Bq/m²	0.08	\triangle		\triangle		\triangle		\triangle		ND \sim 0.23
	精			米			2		ND		2		ND		ND
1.	野	バル	/ イ:	ショ			\triangle		\triangle		\triangle		\triangle		ND \sim 0.06
上	'	ダ・	イコ	ン	Bq/kg 生	0.04	2	0.0	8, 0.2	21	1		ND		ND \sim 0.27
	l	ハクサ	イ、キャ	ベツ			\triangle		\triangle		2	0.0	08, 0.	13	ND \sim 0.29
試	菜	ア	ブラ	ナ			\triangle		\triangle		-		-		$0.09 \sim 0.56$
ПРО	牛	乳 (原:	乳)	Bq∕ℓ	0.04	2		ND		2		ND		ND \sim 0.06
]	牛			肉	Bq/kg 生	0.04	\triangle		\triangle		-		-		ND
料	指標生	生物 :	松	葉	Dq/ Kg 土	0.04	1		0.05		2	1	.3, 4.	0	$0.04 \sim 5.3$
海	海	ヒラノ	く、カレ	ノ、											
'~		ウスメ	バル、	コウ			2		ND		\triangle		\triangle		ND
	産	ナゴ、	アイナ	メ											
洋		ホタラ	テ、アリ	ノビ			1		ND		\triangle		\triangle		ND
	食	コ	ン	ブ	Bq/kg 生	0.04	\triangle		\triangle		1		ND		ND
試		タ		П			1		ND		-		-		ND
"	品	ウ		=			_		_		\triangle		\triangle		ND
dat	指標	チ	ガイ	・ソ			_		_		1		ND		ND \sim 0.05
料	生物	ムラ!	ナキイス	ガイ			\triangle		\triangle		_		-		ND
比号	指														
比較対照 (むつ市川内町)	指標生物	松		葉	Bq/kg 生	0.04	1		0.61		_		_		$0.32 \sim 1.9$
照	物														
		計			_	_	12		-		11		_		

^{・「}平常の変動幅」は平成 15~27 年度の測定値の「最小値~最大値」。「ヒラメ、カレイ、ウスメバル、コウナゴ、アイナメ」及び「ホタテ、アワビ」については平成元~27 年度の測定値の「最小値~最大値」。ただし、東京電力ホールディングス(株)福島第一原子力発電所の事故の影響が考えられる測定値については平常の変動幅の設定に用いていない(平成 23 年度報付 16 参照)。

表 2-7 プルトニウム分析結果

試	料	D	種	類	単 位	定 量 下 限 値	青 検 体 数	森県測定値	平常の変動幅
陸上試料	降	下物	(年	間)	Bq/m²	0.004	Δ	Δ	ND \sim 0.011
試料	表			土	Bq/kg 乾	0.04	Δ	Δ	ND \sim 0.12
海	海	J	底	土	Bq/kg 乾	0.04	Δ	Δ	$0.27 \sim 0.88$
洋	海産食品	ホタ	テ、ア	プワビ			1	0.014	ND \sim 0.023
試		コ	ン	ブ	Bq/kg 生	0.002	\triangle	Δ	ND \sim 0.004
料	指標 生物	ムラ	サキィ	イガイ			Δ	Δ	ND \sim 0.003
比較対照	表			土	Bq/kg 乾	0.04	Δ	Δ	$0.10 \sim 0.17$
		計			_	_	1	_	_

[・]プルトニウムはプルトニウム-239+240。

^{・「}平常の変動幅」は平成15~27年度の測定値の「最小値~最大値」。「ホタテ、アワビ」については平成元~27年度の測定値の「最小値~最大値」。

資 料

核種の記号及び名称

³H,H-3 : トリチウム

⁷Be,Be-7 : ベリリウム-7

⁴⁰K,K-40 : カリウム-40

⁵⁴Mn,Mn-54 : マンガン-54

⁵⁹Fe,Fe-59 : 鉄-59

⁵⁸Co,Co-58 : コバルト-58

⁶⁰Co,Co-60 : コバルト-60

⁹⁰Sr,Sr-90 : ストロンチウム-90

¹³¹I,I-131 : ヨウ素-131

¹³⁴Cs,Cs-134 : セシウム-134

¹³⁷Cs,Cs-137 : セシウム-137

²¹⁴Bi,Bi-214 : ビスマス-214

²²⁸Ac,Ac-228 : アクチニウム-228

²³⁹⁺²⁴⁰Pu,Pu-239+240 : プルトニウム-239+240

1. 青森県実施分測定結果

(1)空間放射線量率測定結果

① モニタリングステーションによる空間放射線量率(NaI)測定結果

(単位:nGy/h)

測定局	測定月	平均	最大	最小	標準偏差	を外れ た時間 数 (単位:	平常の 例外れた原じ (単位 施設起因	因と時間数	平常の 変動幅	過去の 測定値 の範囲	過去の 同一期の 削定値 の 範囲	備考
	10月	10	37	17	9.4	時間)	 	8 HAM 4				
	10月	18	31	17	2.4	8	0	8				
小田	11月	19	39	17	2.6	8	0	8	6~30	12~91	14~91	
野 沢	12月	20	69	16	6.8	56	0	56	(18 ± 12)	12,~91	(20)	
	第3四半期	19	69	16	4.6	72	0	72				
	10月	17	42	15	2.9	8	0	8				
老 部	11月	17	39	15	2.7	5	0	5	4~30	8~111	12~111	
	12月	19	51	14	5.9	52	0	52	(17 ± 13)	0, 0111	(19)	
	第3四半期	17	51	14	4.2	65	0	65				
	10月	22	47	20	2.9	6	0	6				
近 川	11月	22	44	20	2.4	3	0	3	7 ∼ 37	8~80	16~80	
	12月	23	53	19	5.6	31	0	31	(22 ± 15)	0,~00	(24)	
	第3四半期	22	53	19	4.0	40	0	40				

- ・測定値は1時間値。
- ・測定時間数は3箇月間で約2,200時間。
- ・測定値は3 MeVを超える高エネルギー成分を含まない。
- ・「平常の変動幅」は「過去の測定値」の「平均値±(標準偏差の3倍)」。
- ・「過去の測定値の範囲」は平成23~27年度の測定値の「最小値~最大値」。 ただし、小田野沢局については平成27年度の測定値の「最小値~最大値」。
- ・「過去の同一四半期の測定値の範囲」は「過去の測定値」のうち同一四半期の測定値の「最小値~最大値」。また、括弧内の数値は平均値。
- ・「施設起因」は、監視対象施設である東通原子力発電所に起因するもの。
- ・「降雨等」に分類する要因としては、「降雨、降雪、雷雨、積雪等の気象要因及び地理・地形上の要因等の自然条件の変化」、「医療・産業に用いる放射性同位元素等の影響」、「国内外の他の原子力施設からの影響」などが挙げられる。
- ・「施設起因」と「降雨等」の影響が同時に認められた場合は、その主たる原因に分類している。

(参考) モニタリングステーションによる空間放射線量率(電離箱)測定結果

(単位:nGy/h)

測分	官 局	測定月	平均	最大	最小	標準偏差	備考
		10月	57	74	55	2.4	
小田	田子〉口	11月	57	76	55	2.6	
八四	到"八	12月	59	105	55	6.5	
		第3四半期	58	105	55	4.4	
		10月	56	78	53	2.8	
	址(11月	56	76	54	2.7	
	老部	12月	58	88	53	5.6	
		第3四半期	57	88	53	4.1	
		10月	60	82	57	2.7	
近	Ш	11月	60	80	58	2.4	
	<i>)</i> '	12月	62	90	57	5.2	
		第3四半期	61	90	57	3.8	

[・]測定値は1時間値。

[・]測定値は3 MeVを超える高エネルギー成分を含む。

測定局	測定月	平均	最大	最小	標準偏差	平常の変 動幅を外 れた時間 数 (単位: 時間)	平常の変! れた原因。 (単位: 施設起因	と時間数	平常の 変動幅	過去の 測定値 の範囲	過去の 同期の 判定範囲 の	備考
	10月	22	38	20	2.2	5	0	5				
	11月	22	40	20	2.6	6	0	6	8~34		13~85	
砂子又	12月	24	93	18	8.3	59	0	59	(21±13)	9~85	(23)	
	第3四半期	22	93	18	5.3	70	0	70				
	10月	20	38	19	1.8	4	0	4				
	11月	20	39	19	2.1	5	0	5	7 ∼ 31		12~79	
古野牛川	12月	22	84	17	7.0	66	0	66	(19±12)	9~79	(21)	
	第3四半期	21	84	17	4.4	75	0	75				
	10月	20	40	19	2.0	6	0	6				
- W	11月	20	38	18	2.3	6	0	6	9~31	11 71	14~69	
尻 労	12月	22	73	17	6.7	62	0	62	(20±11)	11~71	(21)	
	第3四半期	21	73	17	4.3	74	0	74				
	10月	18	38	16	2.9	9	0	9				
桜木町	11月	18	42	16	2.9	9	0	9	1~31	6∼95	8~95	
按小町	12月	19	101	14	7.5	43	0	43	(16 ± 15)	0.295	(19)	
	第3四半期	18	101	14	5.0	61	0	61				
	10月	23	38	21	1.9	3	0	3				
関根	11月	23	40	21	2.3	5	0	5	10~34	10~78	15~78	
人	12月	25	92	20	7.6	56	0	56	(22 ± 12)	10 - 10	(24)	
	第3四半期	24	92	20	4.8	64	0	64				
	10月	23	38	22	2.2	4	0	4				
吹越	11月	24	50	22	3.3	21	0	21	10~34	10~93	14~93	
<i>/</i> (~	12月	25	46	20	4.8	55	0	55	(22 ± 12)	10 00	(24)	
	第3四半期	24	50	20	3.6	80	0	80				
	10月	23	42	21	3.2	3	0	3				
泊	11月	23	63	20	4.1	6	0	6	2~40	9~130	15~130	
	12月	25	83	17	7.7	35	0	35	(21 ± 19)		(24)	
	第3四半期	23	83	17	5.5	44	0	44				
	10月	25	46	22	2.9	4	0	4				
尾駮	11月	25	57	21	4.8	19	0	19	6~14	6~141	11~141	
	12月	26	73	18	7.7	37	0	37	(22 ± 18)		(25)	
	第3四半期	25	73	18	7.7 5.5	60	0	60				

- ・測定値は1時間値。
- ・測定時間数は3箇月間で約2,200時間。
- ・測定値は3 MeVを超える高エネルギー成分を含まない。
- ・「平常の変動幅」は「過去の測定値」の「平均値±(標準偏差の3倍)」。
- ・「過去の測定値の範囲」は、平成23~27年度の測定値の「最小値~最大値」。ただし、古野牛川局、尻労局及び桜木町局 については平成25~27年度の測定値の「最小値~最大値」。泊局については平成27年度の測定値の「最小値~最大値」。
- ・「過去の同一四半期の測定値の範囲」は「過去の測定値」のうち同一四半期の測定値の「最小値~最大値」。また、括弧内の数値は平均値。
- ・「施設起因」は、監視対象施設である東通原子力発電所に起因するもの。
- ・「降雨等」に分類する要因としては、「降雨、降雪、雷雨、積雪等の気象要因及び地理・地形上の要因等の自然条件の変化」、「医療・産業に用いる放射性同位元素等の影響」、「国内外の他の原子力施設からの影響」などが挙げられる。
- ・「施設起因」と「降雨等」の影響が同時に認められた場合は、その主たる原因に分類している。

(単位:nGy/h)

測定局	測定月	平均	最大	最小	標準偏差	備考
	10月	56	70	54	2.1	
ガトフロ	11月	56	72	54	2.6	
砂子又	12月	58	121	53	7.6	
	第3四半期	57	121	53	4.9	
	10月	50	68	45	2.2	
一世 田	11月	53	73	46	2.9	
古野牛川	12月	57	118	51	7.4	
	第3四半期	53	118	45	5.6	
	10月	53	74	50	2.8	
人 民 労	11月	52	73	46	2.9	
<i>ν</i> ι π	12月	55	108	49	7.3	
	第3四半期	54	108	46	5.0	
	10月	47	66	42	3.5	
桜 木 町	11月	52	77	43	3.3	
按 / 1	12月	54	139	48	7.8	
	第3四半期	51	139	42	6.3	
	10月	53	68	50	2.3	
関根	11月	54	69	50	2.6	
医 位	12月	56	120	50	7.6	
	第3四半期	54	120	50	5.0	
	10月	62	75	59	2.1	
吹 越	11月	62	86	59	3.0	
	12月	64	82	58	4.4	
	第3四半期	63	86	58	3.4	
	10月	61	78	57	3.0	
泊	11月	61	96	57	3.8	
111	12月	63	116	55	7.0	
	第3四半期	62	116	55	5.1	
	10月	62	80	59	2.7	
尾 駮	11月	62	90	57	4.3	
FE 版	12月	63	105	56	6.8	
	第3四半期	62	105	56	4.9	

[・]測定値は1時間値。

[・]測定値は3 MeVを超える高エネルギー成分を含む。

③モニタリングカーによる空間放射線量率(NaI)測定結果

ア 定点測定

測	定步	也 点		測 年月日	測定値 (nGy/h)	積雪深 (cm)	備考
	白		糠	H28.10.17	12	0	
	大平	滝 浄 水	:場	"	16	0	
東通村	小	田 野	沢	IJ	13	0	
	上	田	代	"	15	0	
	砂	子	又	"	15	0	
むつ市	浜	奥	内	"	11	0	
الار ج	中	野	沢	"	15	0	
横浜町	浜		田	11	19	0	
六ケ所村		泊		11	20	0	

- ・測定値は10分値。
- ・降雨雪のない状況で測定。

イ 走行測定

走行ルート	測定年月日	測定値の範囲 (nGy/h)	備考
ルートA(泊~発電所)	H28.10.17	12 ~ 19	
ルートB(発電所~砂子又)	"	11 ~ 22	
ルートC(発電所〜近川)	"	11 ~ 20	
ルートD(浜田〜奥内)	IJ	14 ~ 20	

- ・測定値は500 m毎の平均値。
- ・降雨雪のない状況で測定。

(2) 積算線量測定結果(RPLD)

測	」定 地 点		測 定 期 間(日数)	3 箇 月 積算線量 (μ Gy/91日)	平常の変動幅 (μ Gy/91 日)	備考
	小 田 野	野 沢	H28. 9.28~H28.12.27 (90)	87	83 ~ 90	
	老	部	IJ	86	75 ~ 90	
	砂 子	又	IJ	93	79 ~ 98	
本 な 1 +	古野 4		IJ	92	85 ~ 97	
東通村	尻	労	II	93	84 ~ 95	
	大平滝浄	水場	II	95	71 ~ 99	
	猿ケ	森	II	107	79 ~ 113	
	目	名	II	96	73 ~ 102	
	近	JII	II	95	79 ~ 101	
	桜木	町	IJ	90	78 ~ 94	
むっ市	関	根	IJ	94	79 ~ 99	
	一里/	小 屋	II	101	81 ~ 104	
	美	付	II	90	80 ~ 98	
横浜町	吹	越	II	90	77 ~ 95	
(根) (円)	有	畑	IJ	107	83 ~ 115	
	泊	_	II	94	84 ~ 96	
六ケ所村	尾	駮	IJ	94	75 ~ 101	
	1	又	IJ	94	78 ~ 99	
むっ市	比較対しい方川	対 照 内町)	IJ	99	76 ~ 107	

- ・測定値は宇宙線の一部及び自己照射の線量を含む。
- ・「3箇月積算線量」は測定期間の測定値を91日当たりに換算し整数で示した値。
- ・「平常の変動幅」は平成23~27年度の3箇月積算線量の測定値の「最小値~最大値」。 ただし、小田野沢及び泊については平成27年度、古野牛川、尻労及び桜木町については平成25~27 年度の3箇月積算線量の測定値の「最小値~最大値」。

(3)大気浮遊じん中の全β放射能測定結果

(単位:Bq/m³)

測定局	採取期間	検体数	平均	最大	最小	備考
	H28.10. 3~H28.11. 1	228	1.6	3.9	0.55	
小田野沢	H28.11. 1∼H28.12. 1	239	1.7	4.3	0.42	
小田野伙	H28.12. 1∼H29. 1. 4	271	1.7	4.4	0.18	
	第 3 四 半 期	738	1.7	4.4	0.18	
	H28.10. 3∼H28.11. 1	228	1.5	3.7	0.48	
老 部	H28.11. 1∼H28.12. 1	239	1.5	4.3	0.44	
七 印	H28.12. 1∼H29. 1. 4	271	1.6	4.6	0.18	
	第 3 四 半 期	738	1.5	4.6	0.18	
	H28.10. 3∼H28.11. 1	228	1.6	3.8	0.51	
) III	H28.11. 1∼H28.12. 1	239	1.8	5.4	0.37	
近 川	H28.12. 1∼H29. 1. 4	271	1.8	5.7	0.14	
	第 3 四 半 期	738	1.8	5.7	0.14	

- ・3時間集じん直後、10分間測定。
- ・平均値の算出においては測定値に検出限界以下のものが含まれる場合、そのときの検出限界値を測定値として算出し平均値に「<」を付ける。すべての測定値が検出限界以下の場合、平均値も検出限界以下とし「*」と表示する。

(4)大気中のヨウ素-131測定結果

(単位:mBq/m³)

測定	局	採取期間	検体数	平均	最大	最小	備考
		H28.10. 3~H28.10.31	4	ND	ND	ND	
小田里	联 沿	H28.10.31~H28.11.28	4	ND	ND	ND	
/1, Щ з	打 (八	H28.11.28~H29. 1. 2	5	ND	ND	ND	
		第 3 四 半 期	13	ND	ND	ND	
		H28.10. 3~H28.10.31	4	ND	ND	ND	
老	老部	H28.10.31~H28.11.28	4	ND	ND	ND	
15	ЧП	H28.11.28~H29. 1. 2	5	ND	ND	ND	
		第 3 四 半 期	13	ND	ND	ND	
		H28.10. 3~H28.10.31	4	ND	ND	ND	
近	111	H28.10.31~H28.11.28	4	ND	ND	ND	
<u> </u>	近川	H28.11.28~H29. 1. 2	5	ND	ND	ND	
		第 3 四 半 期	13	ND	ND	ND	

^{・168}時間捕集直後、1時間測定。

(5)環境試料中の放射能測定結果

=	4.6	del	h	407	п.	ЫЬ	Æ	松克左旦□	光 任					機	器
Ē	試	料	名	採	: 収	地	点	採取年月日	単位	⁵⁴ Mn	⁵⁹ Fe	⁵⁸ Co	⁶⁰ Co	¹³⁴ Cs	¹³⁷ Cs
								H28.10.3~ H28.11.1		ND	ND	ND	ND	ND	ND
				小	田	野	沢	H28.11. 1~ H28.12. 1		ND	ND	ND	ND	ND	ND
								H28.12.1~ H29.1.4		ND	ND	ND	ND	ND	ND
								H28.10.3~ H28.11.1		ND	ND	ND	ND	ND	ND
大:	気	浮 遊	じん	老			部	H28.11. 1~ H28.12. 1	mBq/m^3	ND	ND	ND	ND	ND	ND
								H28.12. 1~ H29. 1. 4		ND	ND	ND	ND	ND	ND
								H28.10.3~ H28.11.1		ND	ND	ND	ND	ND	ND
				近			Ш	H28.11. 1~ H28.12. 1		ND	ND	ND	ND	ND	ND
								H28.12.1~ H29.1.4		ND	ND	ND	ND	ND	ND
								H28. 9.30~ H28.10.31		ND	ND	ND	ND	ND	ND
降		下	物	砂	-	子	又	H28.10.31~ H28.11.30	Bq/m ²	ND	ND	ND	ND	ND	ND
								H28.11.30~ H28.12.28		ND	ND	ND	ND	ND	ND
河		Ш	水	小	老部	JII _	上流	H28.10.6		ND	ND	ND	ND	ND	ND
				老			部	H28.10. 3	mBq/@	ND	ND	ND	ND	ND	ND
水		道	水	砂	-	子	又	H28.10. 3	トリチウムについて	ND	ND	ND	ND	ND	ND
八		坦	八	_	里	小	屋	H28.10. 3	ltBq/l	ND	ND	ND	ND	ND	ND
				有			畑	H28.10. 3		ND	ND	ND	ND	ND	ND
精			米	目			名	H28. 9.30		ND	ND	ND	ND	ND	ND
111			<i>></i> \	奥			内	H28. 9.28	Bq/kg生	ND	ND	ND	ND	ND	ND
ダ		イニ	ュン	向			野	H28.10.31	Dq/ kg_L	ND	ND	ND	ND	ND	ND
					ì	泊		H28.10.26		ND	ND	ND	ND	ND	ND
生	핃	(原	到)	豊			栄	H28.10. 3	Bq∕ℓ	ND	ND	ND	ND	ND	ND
	74	(///	40)	東			栄	H28.10. 3	Б4/ €	ND	ND	ND	ND	ND	ND
松			葉	小	田	野	沢	H28.11. 7		ND	ND	ND	ND	ND	ND
7,42				比 (む	較 つ市	対 i川内	照 可町)	H28.11. 8		ND	ND	ND	ND	ND	ND
Ľ		ラ	メ	六前	ケ 面	所 海	村 域	H28.10.18	Bq/kg生	ND	ND	ND	ND	ND	ND
ウ	ス	メノ	バル	東道	■ 動村 :	全面	海域	H28.12. 7	Dd\w8,∓	ND	ND	ND	ND	ND	ND
ア		ワ	ビ	小	田!	野沙	1 沖	H28.11. 21		ND	ND	ND	ND	ND	ND
タ			コ	小	田	野	沢	H28.11.14		ND	ND	ND	ND	ND	ND

⁻ 機器分析によるγ線放出核種、³H及び⁹⁰Srの測定値は試料採取日に補正した値。

[・]ヒラメ(六ヶ所村前面海域)は原子燃料サイクル施設環境放射線調査の試料を兼ねる。

分	析				龙	対化学分	析	/++: +z.
⁷ Be	⁴⁰ K	²¹⁴ Bi	²²⁸ Ac	^{131}I	³ H	⁹⁰ Sr	²³⁹⁺²⁴⁰ Pu	備考
5.4	_	_	_	_	_	_	_	
4.6	_	_	_	_	_	_	_	
4.2	_	_	_	_	_	_	_	
5.4	_	-	_	-	_	_	_	
4.4	_	_	_	_	_	_	_	
4.0	_	_	_	_	_	_	_	
5.3	_	_	_	_	_	_	_	
4.5	_	_	_	_	_	_	_	
4.3	_	_	_	_	_	_	_	
130	ND	_	_	_	_	_	_	
190	ND	_	_	_	_	_	_	
360	ND	_	_	_	_	_	_	
ND	ND	_	_	_	ND	_	_	
ND	ND	_	_	-	ND	_	_	
ND	ND	_	_	_	ND	_	_	
ND	ND	_	_	_	ND	_	_	
ND	ND	_	_	_	ND	_	_	
ND	29	_	_	_	_	ND	_	
ND	30	_	_	_	_	ND	_	
ND	77	_	_	-	_	0.21	_	
ND	67	_	_	_	_	0.08	_	
ND	50			ND	_	ND		
ND	51	_	_	ND	-	ND	_	
66	72		_	_	_	0.05	_	
66	78		_	ı	_	0.61	_	
ND	140	<u> </u>	_	-	_	ND	_	
ND	110	_	_		_	ND	_	
ND	65	_	_	_	_	ND	0.014	
ND	62	_	_	_	_	ND	_	

(6)気象観測結果

①風速·気温·湿度·降水量·積雪深

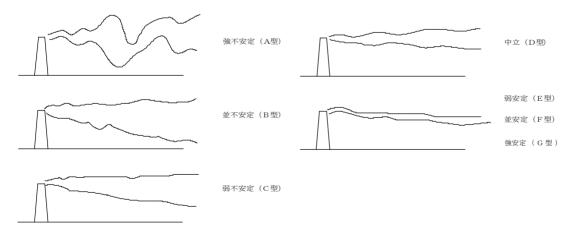
		風速(r	m/sec)	5	贰 温(℃	C)	湿度	E(%)			積	雪 深(cm	1)	
測定局	測定月	平均	最大	平均	最高	最低	平均	最小	降水量 (mm)	平均	最大	最小	過去	の値
		1 . 3	JX/	1	77,141	TK PA	1	20.7		1 7.5	1070	20.1	平均	最大
	10月	_	_	_	_	_	_	_	74.5	0	0	0	0	0
小 田 野 沢	11月	_	_	_	_	_	_	_	50.5	0	1	0	0	0
	12月	_	_	_	_	_	_	_	146.0	1	9	0	4	27
	第3四半期	_	_	_	_	_	_	_	271.0	0	9	0	1	27
	10月	2.1	6.8	12.2	22.8	1.7	69	25	80.0	0	0	0	0	0
老部	11月	2.1	6.7	5.1	14.7	-3.8	71	32	49.5	0	3	0	0	17
老 部	12月	2.2	8.9	2.4	14.4	-4.4	74	30	134.5	2	25	0	8	38
	第3四半期	2.1	8.9	6.6	22.8	-4.4	71	25	264.0	1	25	0	3	38
	10月	1.5	5.8	11.9	23.4	2.0	71	41	68.0	0	0	0	0	0
近川	11月	1.6	5.4	4.6	13.9	-3.1	72	46	39.0	0	1	0	0	4
<u> </u>	12月	1.7	8.2	1.9	12.4	-6.1	76	47	118.5	1	17	0	4	28
	第3四半期	1.6	8.2	6.1	23.4	-6.1	73	41	225.5	0	17	0	1	28
	10月	1	1	-		_	_	_	77.5	0	0	0	0	0
砂子又	11月	_	_	_	_	_	_	_	56.0	0	4	0	0	11
49 丁 又	12月	_	_	_	_	_	_	_	161.0	1	14	0	8	73
	第3四半期	1	1	-		_	_	_	294.5	0	14	0	3	73
	10月	1	1	-		_	-	_	67.5	0	0	0	0	0
古野牛川	11月	_	_	_	_	_	_	_	49.5	0	5	0	0	2
百野千川	12月	_	_	_	_	_	_	_	162.5	1	14	0	5	54
	第3四半期	_	_	_	_	_	_	_	279.5	0	14	0	2	54
	10月		-	1	-	_	-	_	73.0	0	0	0	0	0
	11月	_	_	_	_	_	_	_	60.0	0	4	0	0	3
尻 労	12月	_	_	_	_	_	_	_	142.0	1	13	0	4	51
	第3四半期	_	_	_	_	_	_	_	275.0	0	13	0	2	51

				風速(ı	m/sec)	Ž	気 温(℃	C)	湿度	£(%)			積	雪 深(cm	1)	
Ì	則定局	1	測定月	平均	最大	平均	最高	最低	平均	最小	降水量 (mm)	平均	最大	最小	過去	の値
				1 **3	AXX	1 **3	双阳	TK PA	1	20.7		1 75		20.1	平均	最大
			10月	_	_	_	_	_	_	_	111.5	0	0	0	0	0
桜	木	町	11月	_	_	_	_	_	_	_	72.5	0	4	0	0	3
汝	//<	щĵ	12月	_	_	_	_	_	_	_	205.0	4	22	0	14	82
			第3四半期	_	_	_	_	_	_	_	389.0	1	22	0	5	82
			10月	_	_	_	_	_	_	_	86.5	0	0	0	0	0
BB		48	11月	_	_	_	_	_	_	_	76.0	0	7	0	0	10
関		根	12月	_	_	_	_	_	_	_	194.5	2	16	0	8	65
		第3四半期	_	-	_	_	_	_	_	357.0	1	16	0	3	65	
			10月	_		_	_	_	_	_	73.5	0	0	0	0	0
n/a		4.4	11月	_	_	_	_	_	_	_	48.0	0	2	0	0	11
吹		越	12月	_	_	_	_	_	_	_	122.5	1	9	0	6	48
			第3四半期	_			_	_	-	_	244.0	0	9	0	2	48
			10月	_	-	_	_	_	_	_	89.0	0	0	0	0	0
	3/4		11月	_	_	_	_	_	_	_	71.0	0	4	0	0	0
	泊		12月	_	_	_	_	_	_	_	182.5	2	33	0	3	25
			第3四半期	_	-	_	_	_	_	_	342.5	1	33	0	1	25
			10月	_	-	_	_	_		_	107.5	0	0	0	0	0
尾	= #	歐	11月	_	_	_	_	_	_	_	86.5	0	9	0	0	21
佬		駮	12月	_	_	_	_	_	_	_	152.0	4	28	0	17	85
	<u> </u>	第3四半期	_	-		_	_	-	_	346.0	1	28	0	6	85	

[・]測定値は「地上気象観測指針(平成14年気象庁)」に基づく1時間値。

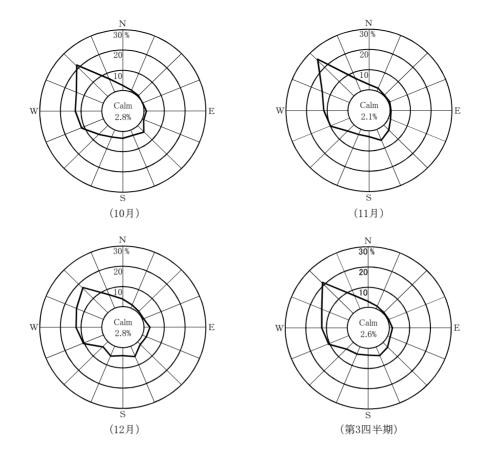
②大気安定度出現頻度表

単位:時間(括弧内は%)

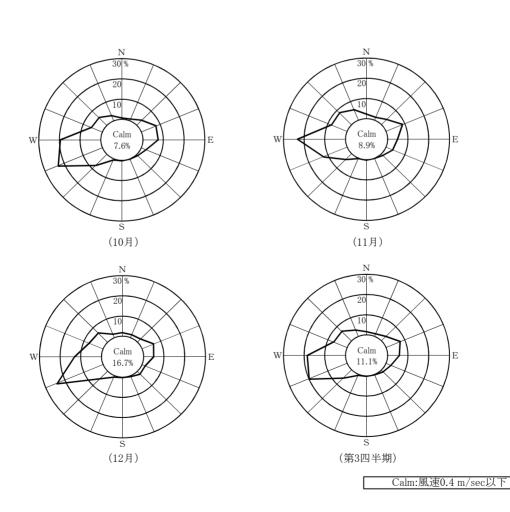

測定局	分類 測定月	А	А-В	В	в-с	С	C-D	D	Е	F	G	計	備考
	10月	6 (0.8)	46 (6.2)	63 (8.5)	21 (2.8)	33 (4.5)	10 (1.4)	263 (35.6)	40 (5.4)	28 (3.8)	229 (31.0)	739 (100)	
老部	11月	0.0)	16 (2.2)	39 (5.4)	11 (1.5)	24 (3.3)	11 (1.5)	325 (45.1)	45 (6.3)	37 (5.1)	212 (29.4)	720 (100)	
	12月	0 (0.0)	10 (1.3)	42 (5.7)	15 (2.0)	36 (4.8)	3 (0.4)	381 (51.3)	34 (4.6)	48 (6.5)	174 (23.4)	743 (100)	
	第 3 四半期	6 (0.3)	72 (3.3)	144 (6.5)	47 (2.1)	93 (4.2)	24 (1.1)	969 (44.0)	119 (5.4)	113 (5.1)	615 (27.9)	2,202 (100)	
	10月	10 (1.4)	61 (8.3)	74 (10.0)	12 (1.6)	25 (3.4)	2 (0.3)	237 (32.2)	24 (3.3)	30 (4.1)	262 (35.5)	737 (100)	
近川	11月	0.0)	11 (1.5)	34 (4.7)	1 (0.1)	23 (3.2)	0.0)	335 (46.5)	44 (6.1)	27 (3.8)	245 (34.0)	720 (100)	
近川	12月	0.0)	10 (1.3)	37 (5.0)	6 (0.8)	22 (3.0)	0.0)	432 (58.1)	30 (4.0)	37 (5.0)	170 (22.8)	744 (100)	
	第 3 四半期	10 (0.5)	82 (3.7)	145 (6.6)	19 (0.9)	70 (3.2)	2 (0.1)	1,004 (45.6)	98 (4.5)	94 (4.3)	677 (30.8)	2,201 (100)	

^{・「}発電用原子炉施設の安全解析に関する気象指針(平成13年3月 原子力安全委員会)」に基づく1時間値を用いて分類。

大気安定度分類表


風速(U)		日射量(T) kW/m ²		放射	収支量(Q) kV	V/m^2
m/s	T≧0.60	0.60>T ≧0.30	0.30>T ≧0.15	0.15>T	Q≧ -0.020	-0.020> Q≧-0.040	-0.040 >Q
U<2	А	А-В	В	D	D	G	G
2≦U<3	А-В	В	C	D	D	E	F
3≦U<4	В	В-С	C	D	D	D	E
4≦U<6	C	C-D	D	D	D	D	D
6≦U	С	D	D	D	D	D	D

発電用原子炉施設の安全解析に関する気象指針(平成13年3月 原子力安全委員会)



大気安定度と煙の型との模式図

③ 風配図 老 部

近 川

2. 事業者実施分測定結果

(1)空間放射線量率測定結果

①モニタリングポストによる空間放射線量率(NaI)測定結果

(単位:nGv/h)

測定局	測定月	平均	最大	最小	標準偏差	平 変 が を 外 時 に 単位:	平常の3 外れた原 (単位:	因と時間	平常の変動幅	過去の 測定値 の範囲	過去の 同一期の 半期定面	備考
						時間)	施設起因	降雨等			の範囲	
	10月	17	29	15	2.0	5	0	5				
小川町	11月	17	34	15	2.3	9	0	9	7~27	10~73	13~73	
\1.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	12月	18	63	14	5.5	51	0	51	(17 ± 10)	10 -73	(18)	
	第3四半期	17	63	14	3.7	65	0	65				
	10月	22	38	20	2.4	5	0	5				
林ノ脇	11月	22	46	20	2.7	9	0	9	9~33	10~88	15~88	
	12月	23	47	17	4.7	36	0	36	(21 ± 12)	10, 500	(22)	
	第3四半期	22	47	17	3.4	50	0	50				

- ・測定値は1時間値。
- ・測定時間数は3箇月間で約2,200時間。
- ・測定値は3 MeVを超える高エネルギー成分を含まない。
- ・「平常の変動幅」は、「過去の測定値」の「平均値±(標準偏差の3倍)」。
- ・「過去の測定値」の範囲は、平成23~27年度の測定値の「最小値~最大値」。
- ・「過去の同一四半期の測定値」の範囲は、「過去の測定値」のうち同一四半期の測定値の「最小値~最大値」。 また、括弧内の数値は平均値。
- ・「施設起因」は、監視対象施設である東通原子力発電所起因によるもの。
- ・「降雨等」に分類する要因としては、「降雨、降雪、雷雨、積雪等の気象要因及び地理・地形上の要因等の自然条件の変化」、 「医療・産業に用いる放射性同位元素等の影響」、「国内外の他の原子力施設からの影響」などが挙げられる。
- ・「施設起因」と「降雨等」が同時に認められた場合は、その主たる原因に分類している。

(参考)モニタリングポストによる空間放射線量率(電離箱)測定結果

(単位:nGy/h)

測定局	測定月	平均	最 大	最 小	標準偏差	備考
	10月	49	60	47	1.9	
小川町	11月	49	65	46	2.2	
/J\) #J	12月	50	96	46	5.5	
	第3四半期	49	96	46	3.7	
	10月	54	72	52	2.5	
林ノ脇	11月	54	78	52	2.8	
	12月	56	82	50	5.0	
	第3四半期	55	82	50	3.7	

- ・測定値は1時間値。
- ・測定値は3 MeVを超える高エネルギー成分を含む。

(2)積算線量測定結果(RPLD)

測	定	地	点	測	定	期	間	(日数)	3 箇 月 積算線量 (μ Gy/91日)		の変 Gy/9]		備	考
	白		糠	H28	.9.28	~H28	8.12.27	(90)	87	81	\sim	89		
平 次 + +	上	田	代			″			100	81	~	102		
東通村	上	田	屋			"			100	82	\sim	102		
	蒲	野	沢			"			94	83	\sim	99		
むつ市	小	Ш	町			"			88	79	~	90		
横浜町	林	1	脇			"			95	82	~	97		

- ・測定値は宇宙線の一部及び自己照射の線量を含む。
- ・「3箇月積算線量」は測定期間の測定値を91日当たりに換算し整数で示した値。
- ・「平常の変動幅」は平成23年4月~平成28年3月の3箇月積算線量の測定値の「最小値~最大値」。 ただし、白糠については平成26年4月~平成28年3月の3箇月積算線量の測定値の「最小値~最大値」。

(3)環境試料中の放射能測定結果

34 No. 45		松野年日日	H 4				機	器	
試 料 名	採取地点	採取年月日	単 位	⁵⁴ Mn	⁵⁹ Fe	⁵⁸ Co	⁶⁰ Co	¹³⁴ Cs	¹³⁷ Cs
		H28.10.3∼ H28.11.1		ND	ND	ND	ND	ND	ND
	周辺監視区域境界 付近(西側)	H28.11.1∼ H28.12.1		ND	ND	ND	ND	ND	ND
大気浮遊じん		H28.12.1∼ H29.1.4	mBq/m³	ND	ND	ND	ND	ND	ND
// MI SE 010		H28.10.3∼ H28.11.1		ND	ND	ND	ND	ND	ND
	周辺監視区域境界 付近(南側)	H28.11.1∼ H28.12.1		ND	ND	ND	ND	ND	ND
		H28.12.1∼ H29.1.4		ND	ND	ND	ND	ND	ND
		H28. 9.30~ H28.10.31		ND	ND	ND	ND	ND	ND
降 下 物	周辺監視区域境界付 近	H28.10.31~ H28.11.30	Bq/m ²	ND	ND	ND	ND	ND	ND
		H28.11.30~ H28.12.28		ND	ND	ND	ND	ND	ND
水 道 水	小 田 野 沢	H28.10.4	mBq∕0	ND	ND	ND	ND	ND	ND
	近 川	H28.10.5	トリチウム については	ND	ND	ND	ND	ND	ND
	泊	H28.10. 4	Bq/ℓ	ND	ND	ND	ND	ND	ND
	小 田 野 沢	H28.10. 3		ND	ND	ND	ND	ND	ND
精 米	大 豆 田	H28.10. 5		ND	ND	ND	ND	ND	ND
ダイコン	近川	H28.10.19	Bq/kg生	ND	ND	ND	ND	ND	ND
キャベツ	砂 子 又	H28.10.11		ND	ND	ND	ND	ND	ND
ハクサイ	今 泉	H28.10.24		ND	ND	ND	ND	ND	ND
牛乳(原乳)	金谷沢	H28.10.5	Pa/0	ND	ND	ND	ND	ND	ND
十 孔 (尿 孔 /	鶏 沢	H28.10. 5	Bq∕ℓ	ND	ND	ND	ND	ND	ND
公 葉	老部	H28.11. 7	De /1: ~ H-	ND	ND	ND	ND	ND	ND
 葉	大 豆 田	H28.11. 7	Bq/kg生	ND	ND	ND	ND	ND	ND
<i>=</i> '	放水口付近	H28.10.12	mBq/l	ND	ND	ND	ND	ND	ND
毎 水	放 水 口 沖	H28.10.12	トリチウム については Bq/0	ND	ND	ND	ND	ND	ND
コンブ	放 水 口 付 近	H28.10.12	D / 1	ND	ND	ND	ND	ND	ND
チガイソ	白糠	H28.10.12	Bq/kg生	ND	ND	ND	ND	ND	ND

[・] γ 線スペクトロメトリ、 3 H及び 90 Srの測定値は、試料採取日に補正した値。

分	析				放射化	学分析	備考
⁷ Be	⁴⁰ K	²¹⁴ Bi	²²⁸ Ac	¹³¹ I	³ H	⁹⁰ Sr	7用 - 行
3.2	_	_	_	—	_	_	
1.6	_	_	_	_	_	_	
1.6	_	_	_	—	_	_	
4.1	_	_	_	_	_	_	
3.5	_	_	_	_	_	_	
3.3	_	_	_	_	_	_	
130	ND	_	_	_	_	_	
250	ND	_	_	_	_	_	
370	ND	_	_	_	_	_	
ND	ND	_	_	_	ND	_	
ND	ND	_	_	_	ND	_	
ND	ND	_	_	_	ND	_	
ND	26	_	_	_	_	ND	
ND	32	_	_	_	_	ND	
ND	83	_	_	_	_	ND	
ND	55	_	_	ND	_	0.08	
ND	86	_	_	ND	_	0.13	
ND	47	_	_	ND	_	ND	
ND	51	_	_	ND	_	ND	
63	77	_	_	ND	_	4.0	
68	80	_	_	_	_	1.3	
ND	_	_	_	_	ND	_	
ND	_	_	_	_	ND	_	
ND	370	_	_	ND	_	ND	
8	210	_	_	_	_	ND	

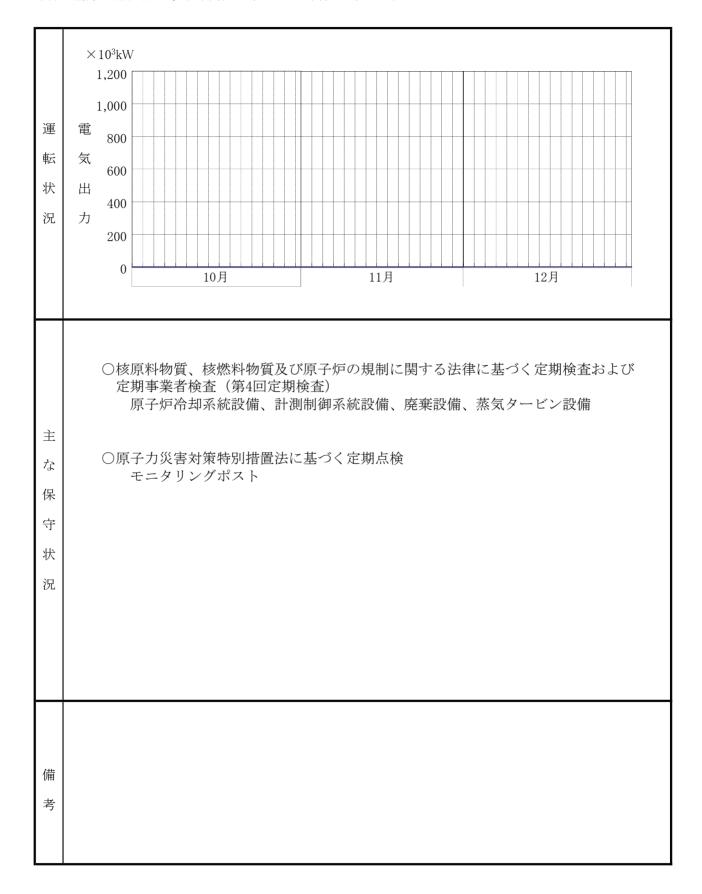
(4)気象観測結果

①降水量•積雪深

		降 水 量 (mm)	積 雪 深(cm)							
測定局	測定月		平均	最大	最小	過去	の値			
			+ ×	以 八	取 /]、	平均	最大			
小川町	10月	84.0	0	0	0	0	0			
	11月	65.5	0	6	0	0	6			
\1\1\1\E	12月	178.0	2	13	0	6	70			
	第3四半期	327.5	1	13	0	2	70			
	10月	80.5	0	0	0	0	0			
林ノ脇	11月	51.5	0	1	0	0	5			
4本ノガ 助 -	12月	125.0	4	30	0	12	65			
	第3四半期	257.0	1	30	0	4	65			

[・]積雪深における「過去の値」は、平成23~27年度の同一時期の平均値及び最大値。

3. 東通原子力発電所の運転状況


(事業者報告)

表中の記号

*:検出限界未満(放射能の分析)

/ :放出実績なし

(1)発電所の運転保守状況(平成28年10月~平成28年12月)

(2)放射性物質の放出状況 (平成28年10月~平成28年12月)

① 放射性気体廃棄物の放射性物質の放出量

核種		j	放 出 量	1		年間放出	
(測定の箇所)	第1四半期	第2四半期	第3四半期	第4四半期	年 度	管理目標値	
希 ガ ス (排気筒)	* (Bq)	* (Bq)	* (Bq)	(Bq)	* (Bq)	1.2×10 ¹⁵ (Bq)	
I-131 (排気筒)	* (Bq)	* (Bq)	* (Bq)	(Bq)	* (Bq)	2.0×10 ¹⁰ (Bq)	
H−3 (排気筒)	1.5×10 ¹⁰ (Bq)	6.0×10 ⁹ (Bq)	6.1×10 ⁹ (Bq)	(Bq)	$2.7 \times 10^{10} (Bq)$		
備 考	・放射性物質の放出量(Bq)は、排気中の放射性物質の濃度(Bq/cm³)に排気量乗じて求めている。 ・H-3は「発電用軽水型原子炉施設周辺の線量目標値に対する評価指針」の言対象核種ではないため、管理目標値を定めていない。 ・検出限界濃度は次に示すとおりである。 希ガス :2×10 ⁻² (Bq/cm³)以下 I-131 :7×10 ⁻⁹ (Bq/cm³)以下 H-3 :4×10 ⁻⁵ (Bq/cm³)以下						

② 放射性液体廃棄物の放射性物質の放出量

核種		放 出 量							
(測定の箇所)	第1四半期	第2四半期	第3四半期	第4四半期	年 度	年間放出 管理目標値			
H-3を除く 全放射能 (サンプルタンク)	* (Bq)	* (Bq)	* (Bq)	(Bq)	* (Bq)	3.7×10 ⁹ (Bq)			
H−3 (サンプ°ルタンク)	* (Bq)	* (Bq)	8.6×10 ⁹ (Bq)	(Bq)	8.6×10 ⁹ (Bq)				
備 考	・放射性物質の放出量(Bq)は、排水中の放射性物質の濃度(Bq/cm³)に排水量乗じて求めている。 ・H-3は「発電用軽水型原子炉施設周辺の線量目標値に対する評価指針」の計対象核種ではないため、管理目標値を定めていない。 ・検出限界濃度は次に示すとおりである。 H-3を除く全放射能 :2×10 ⁻² (Bq/cm³)以下 (Co-60で代表した) H-3を除く全放射能 :2×10 ⁻¹ (Bq/cm³)以下								

参考資料

- 1. モニタリングポスト測定結果
 - ① 空間放射線量率
- 2. 排気筒モニタ測定結果
 - ① 全ガンマ線計数率(希ガス)
- 3. 放水口モニタ測定結果
 - ① 全ガンマ線計数率
- 4. 気象観測結果
- ① 風速
 ② 降水量
 ③ 大気安定度
 ④ 風配図

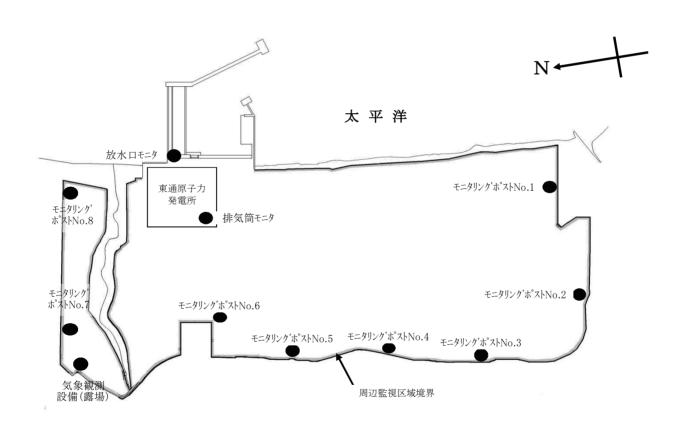


図 モニタリングポスト、排気筒モニタ、放水口モニタ及び気象観測設備配置図

① 空間放射線量率

(単位:nGy/h)

測定地点	測定月	平 均	最 大	最 小	過 去 最大値	備 考
	10月	18	38	16		
No.1	11月	18	42	16	97	
NO.1	12月	20	48	15	91	
	第3四半期	19	48	15		
	10月	19	37	17		
No.2	11月	19	40	17	88	
NO.2	12月	20	48	16	00	
	第3四半期	19	48	16		
	10月	20	41	18		
NI - 9	11月	20	42	17	94	
No.3	12月	22	54	17	34	
	第3四半期	21	54	17		
	10月	18	38	17		
NI. 4	11月	19	37	17	0.4	
No.4	12月	20	46	16	94	
	第3四半期	19	46	16		
	10月	20	43	18		
NI. F	11月	20	42	18	100	
No.5	12月	21	52	17	108	
	第3四半期	20	52	17		
	10月	16	38	14		
N. C	11月	16	38	14	101	
No.6	12月	18	52	14	101	
	第3四半期	17	52	14		
	10月	19	36	17		
No. 7	11月	19	37	17	76	
No.7	12月	20	48	16	10	
	第3四半期	19	48	16		
	10月	13	34	11		
NI- O	11月	13	36	11	00	
No.8	12月	15	58	11	92	
	第3四半期	14	58	11		

^{・2&}quot; $\phi \times 2$ "NaI(Tl)シンチレーション検出器(温度補償型恒温装置付) DBM方式

[・]測定値は1時間値。

[·]局舎屋根(地上約4 m)設置

[・]測定値は、3 MeVを超える高エネルギー成分を含まない。

^{・「}過去最大値」は、平成16~27年度の測定値の最大値。

2.排気筒モニタ測定結果 (平成28年10月~平成28年12月)

① 全ガンマ線計数率(希ガス)

(単位:s⁻¹)

測定地点	測定月	平均	最 大	最 小	過 去 最大値	備考
排気筒モニタ	10月 11月 12月	3.6 3.7 3.7	4.0 4.1 4.1	3.3 3.3 3.3	4.4	
	第3四半期	3.7	4.1	3.3		

- ·2" φ×2"NaI(Tl)シンチレーション検出器
- ・測定値は10分値。
- ・「過去最大値」は、平成16~27年度の測定値の最大値。
- 3.放水口モニタ測定結果 (平成28年10月~平成28年12月)
 - ① 全ガンマ線計数率

(単位:min⁻¹)

測定地点	測定月	平 均	最 大	最 小	過 去 最大値	備考
	10月	190	210	170		
放水口モニタ	11月	190	220	180	240	
放水口で一ク	12月	190	240	170	340	
	第3四半期	190	240	170		

- ・2" φ×2"NaI(Tl)シンチレーション検出器(温度補償型)
- ・測定値は10分値。
- ・「過去最大値」は、平成16~27年度の測定値の最大値。

4. 気象観測結果 (平成28年10月~平成28年12月)

① 風速

測定高さ	測 定 月	風速	備 考		
例だ同さ	例だ月	平均	最 大	1/III 1 5	
	10月	1.5	5.6		
地上10 m	11月	1.6	7.0		
地工.10 III	12月	1.9	7.3		
	第3四半期	1.7	7.3		
	10月	4.8	14.7		
地上100 m	11月	4.6	13.8		
	12月	5.4	18.8		
	第3四半期	5.0	18.8		

- ・「地上気象観測指針(平成14年 気象庁)」に基づく1時間値。
- ・地上 10 m:風向風速計[プロペラ型](気象庁検定付)
- ・地上100 m:ドップラーソーダ

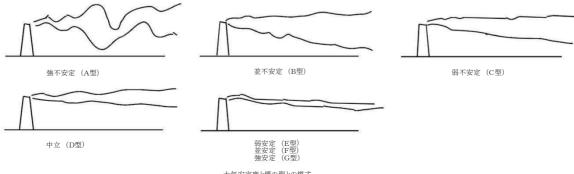
② 降水量

測定地点	測定月	降水量(mm)	備考
	10月	91.5	
電 相	11月	55.5	
露場	12月	163.0	
	第3四半期	310.0	

- ・「地上気象観測指針(平成14年 気象庁)」に基づく1時間値を用いて算出。
- •雨雪量計[転倒升方式](気象庁検定付)

③ 大気安定度

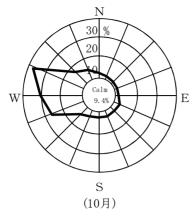
(単位:時間[括弧内は%])

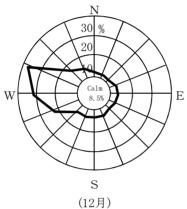

測定地点	分類測定月	А	А-В	В	В-С	С	C-D	D	Е	F	G	計	備考
	10月	5	44	51	22	25	15	241	15	21	266	705	
	10月	(0.7)	(6.2)	(7.2)	(3.1)	(3.5)	(2.1)	(34.2)	(2.1)	(3.0)	(37.7)	(100)	
	11月	0	15	38	10	18	4	329	23	28	255	720	
電 相	11月	(0.0)	(2.1)	(5.3)	(1.4)	(2.5)	(0.6)	(45.7)	(3.2)	(3.9)	(35.4)	(100)	
露場	10 ⊞	0	12	32	4	14	5	428	31	26	187	739	
	12月	(0.0)	(1.6)	(4.3)	(0.5)	(1.9)	(0.7)	(57.9)	(4.2)	(3.5)	(25.3)	(100)	
	第 3	5	71	121	36	57	24	998	69	75	708	2164	
	四半期	(0.2)	(3.3)	(5.6)	(1.7)	(2.6)	(1.1)	(46.1)	(3.2)	(3.5)	(32.7)	(100)	

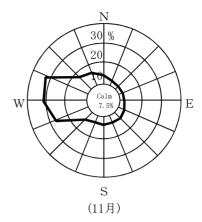
- ・「発電用原子炉施設の安全解析に関する気象指針(平成13年3月 原子力安全委員会)」に基づく1時間値を用いて分類。
- ・風向風速計[プロペラ型](気象庁検定付)、日射計[電気式](気象庁検定付)、放射収支計[風防型]

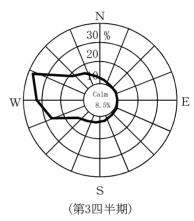
大気安定度分類表

, 1,7,7,5,2,7,7,7,4							
風速(U)		日射量(T	`) kW/m ²	放射収支量(Q) kW/m ²			
m/s	T ≥ 0.60	0.60>T	0.30>T	0.15>T	$Q \ge$	-0.020 > Q	-0.040
III / U	1 = 0.00	≧ 0.30	≥ 0.15	0.15 / 1	-0.020	≥-0.040	> Q
U < 2	A	A - B	В	D	D	G	G
$2 \le U < 3$	A - B	В	C	D	D	E	F
$3 \le U < 4$	В	B-C	C	D	D	D	E
$4 \le U < 6$	C	C-D	D	D	D	D	D
6 ≦ U	C	D	D	D	D	D	D

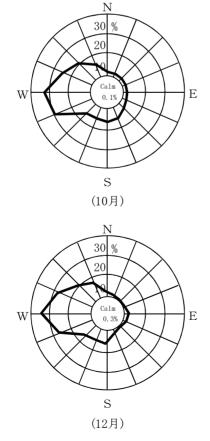

発電用原子炉施設の安全解析に関する気象指針(平成13年3月 原子力安全委員会)

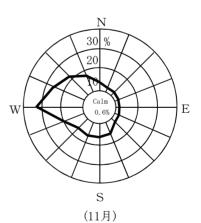


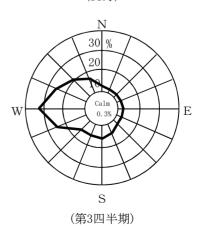

大気安定度と煙の型との模式


4 風配図

•地上 10 m







•地上100 m

Calm:風速0.4 m/sec以下

4. 東通原子力発電所に係る環境放射線モニタリング実施要領

東通原子力発電所に係る環境放射線モニタリング実施要領

平成 1 5 年 2 月策定 平成 1 7 年 1 0 月改訂 平成 2 1 年 4 月改訂 平成 2 4 年 3 月改訂 平成 2 5 年 4 月改訂 平成 2 6 年 4 月改訂 平成 2 7 年 3 月改訂 平成 2 8 年 3 月改訂 平成 2 8 年 1 1 月改訂

1. 趣旨

「東通原子力発電所に係る環境放射線モニタリング実施計画」により環境放射線の測定 方法、分析方法等について必要な事項を定めるものとする。

2. 測定装置及び測定方法

(1) 空間放射線等

	; 洪	
	力	
社	定	— 和
计		<u></u> •
東北電力株	測定装置	 ・低線量率計・高線量率計 ・高線量率計 14 0、8 気圧球形窒素ガス+アルゴンガス加圧型電離箱検出器(加温装置付)
森	測 定 方 法	測 定 法:文部科学省編「連続モニタによる環境γ線測定法」(平成8年改訂)に準拠 連続測定(1 時間値) 測定位置:地上1.8 m 校正線源:137Cs
丰	測 定 装 置	 ・低線量率計 3" φ×3" Nal(TI)シンチレーション 6(E)関数荷重演算方式 6(E)関数荷重演算方式 6(E)関数荷重演算方式 6(E)関数荷重演算方式 6(E)関数荷重演算方式 14 0,4 気圧球形窒素ガス+アルゴン 校正線源: 137 Cs ガス加圧型電離箱検出器(加温装置付)(小田野沢、老部、近川、砂子又、ガス加圧型電離箱検出器(加温装置付)(小田野沢、老部、近川、砂子又、ガス加圧型電離箱検出器(加温装置付)(関根、尻労、古野牛川、桜木町) (関根、尻労、古野牛川、桜木町)
世		空間放射線量率

東北電力株式会社	測 定 装 置	•同 左							
禁	測 定 方 法	測 定 法:文部科学省編「蛍光ガラス線量	計を用いた環境γ線量測定法」	(平成14年) に準拠	素 子 数:地点当たり3個	積算期間:3 箇月	収 納 箱:木製	測定位置: 地上1.8 m	校正線源: ¹³⁷ Cs
#	測 定 装 置	・蛍光ガラス線量計 (RPLD)							
	T.				和				

※1:全α放射能については、解析評価のために測定。

		_		_		_	_		_		
森	漁 定 方 法	測 定 法:文部科学省編「放射性ヨウ素分析法」	(平成8年改訂)に準拠 連続測定	2" φ×2″ NaI(TI)シンチレー 捕 集 時 間:168 時間	測 定 時 間:捕集終了後1時間測定	捕 集 方 法:捕集材間けつ自動移動方式	測定試料形態:活性炭吸着物	捕 集 材:活性炭カートリッジ	大気吸引量:約500/分	吸引口位置:地上1.5~2.0 m	校正線源:131 模擬線源 (133Ba+137Cs)
	副			ノチレー							
皇	採			JaI(TI)シ:							
	河	ヨウ素モニタ	器田	$\phi \times 2''$	ション検出器						
	觚	4 € •	検	2″	Ϋ́ Ш						
П	П					ョウ素					
Έ	Í(大気中のヨウ素	I_{181}				

(2) 環境試料中の放射能

電力株式会社	測 定 方 法	測定試料形態:同 左 ただし ・河川水は調査対象外 ・指標生物の松葉は ¹³¹ I の測定では生試料又は 乾燥試料 測 定 容 器:同 左 測 定 時 間:同 左	• 同 左	• 同 左	
東北	測定装置	· 厄 村	• 同 左	• 同 左	
	瀬 定 方 法	測 定 法:文部科学省編「ゲルマニウム半導体検出器によるガンマ線スペクトロメトリー」(平成4年改訂) 文部科学省編「ゲルマニウム半導体検出器等を用いる機器分析のための試料の前処理法」(昭和57年) 文部科学省編「放射性ヨウ素分析法」(平成8年改訂) に準拠 人気浮遊じん 1箇月分のろ紙の集積 前川水、水道	測定法:文部科学省編「トリチウム分析法」(平成14年改訂) に準拠測定容器:145 m l バイアル測定時間:500分(50分、10回測定)	測定法:文部科学省編「放射性ストロンチウム分析法」(平成15年改訂) に準拠測定容器:25 mm φステンレススチール皿測定時間:60分	測定法:文部科学省編「プルトニウム分析法」(平成2年改訂)に 準拠 測定用電着板:25 mm φステンレススチール製 測定時間:90,000秒
#正	測 定 装 置	ゲルマニウム半導体検出器	・低バックグラウンド液体シンチレーション計数装置	・低バックグラウンド2ヵガスフロー計数装置	・シリコン半導体検出器
면	T.	機 線 後 及 田 校 音 春	放射化学分析3H	放射化学分析 ⁹⁰ Sr	放射化学分析 239+240Pu

(3) 気 象

項目	青森	県	東北電力	株式会社
以 日	測 定 装 置	測 定 方 法	測定装置	測定方法
風 向・風 速	・風向風速計[プロペラ型]	測定法:指針*に準拠		
黑 问 " 黑 还	(気象庁検定付)	測定位置:地上約 10 m		
 気 温	・温度計[白金測温抵抗式]	測定法:指針*に準拠		
X\ 1 <u></u>	(気象庁検定付)	測定位置:地上約2 m		
 降 水 量	·雨雪量計[転倒升方式]	測定法:指針*に準拠	 ・同 左	測定法:同 左
一件	(気象庁検定付)	測定位置:地上約2 m		測定位置:同左
感 雨	 ・感 雨 雪 器[電極式]	測定法:指針*に準拠	 ・同 左	測定法:同 左
\(\frac{1}{2}\)	一	測定位置:地上約2 m		測定位置:同左
積 雪 深	・積雪計 [レーザー式] (気象庁検定付)	測定法:指針 [※] に準拠 測定位置:地上約3 m	・同 左	測定法:同左測定位置:同左
日射量	・日射計[熱電対式]	測定法:指針*に準拠		
	(気象庁検定付)	測定位置:地上約 5、9 m		
放射収支量	·放射収支計[熱電対式]	測定法:指針*に準拠		
双别以义里	放射収入計[熱电刈入]	測定位置:地上約2 m		
湿 度	·湿度計[毛髪式]	測定法:指針*に準拠		
业 及	(気象庁検定付)	測定位置:地上約2 m		
大気安定度	_	測定法:指針*に準拠		

※:「発電用原子炉施設の安全解析に関する気象指針」(平成13年改訂 原子力安全委員会)

(4) モニタリングカーによる測定

項目		青				森	県		
均	目	測	測 定 装 置		置	測	定	方	法
		$2'' \phi \times 2$	" NaI(Tl)	シンチレ	ーション	測 定 法:			
空間放射線量率		検出器 (温度補償方式加温装置付)				定点測定	10 分間測定		
		G(E)関数荷重演算方式				走行測定	10 秒間の測定値を 500 m ごと		
							に平均		
							走行速度	美 30~60	km/h
						測定位置:地	1上3.2 m	(車両上)	

3. 環境試料中の放射能測定対象核種

⁵⁴Mn、⁵⁹Fe、⁵⁸Co、⁶⁰Co、¹³⁴Cs、¹³⁷Cs、⁷Be、⁴⁰K、²¹⁴Bi、²²⁸Ac、³H、⁹⁰Sr、¹³¹I、²³⁹⁺²⁴⁰Pu なお、²¹⁴Bi、²²⁸Ac については、土試料のみとする。

4. 数値の取扱方法

(1) 空間放射線量率

単位	表 示 方 法
nGy/h	整数で示す。

(2) 積算線量

単位	表 示 方 法
μ Gy/91 日	3 箇月積算線量は、測定期間の測定値を 91 日当たりに換算し、整数で示す。
μ Gy/365 日	年間積算線量は、各期間の測定値を合計した後、365 日当たりに換算し、整数で示す。

(3) 大気浮遊じん中の全β放射能

単 位	表示方法										
	有効数字2桁で示す。										
	測定値がその計数誤差の3倍以下の場合検出限界以下とし「*」と表示する。										
$\mathrm{Bq/m^3}$	平均値の算出においては、測定値に検出限界以下のものが含まれる場合、そのと										
	きの検出限界値を測定値として算出し、平均値に「<」を付ける。全ての測定値										
	が検出限界以下の場合、平均値も検出限界以下とし「*」と表示する。										

(4) 大気中のヨウ素

単 位	表 示 方 法									
	有効数字2桁で示す。最小位は1位。									
	定量下限値は「20 mBq/m³」とし、定量下限値未満は「ND」と表示する。									
$\mathrm{mBq/m^3}$	平均値の算出においては、測定値に定量下限値未満のものが含まれる場合、定量									
	下限値を測定値として算出し、平均値に「<」を付ける。全ての測定値が定量下									
	限値未満の場合、平均値も定量下限値未満とし「ND」と表示する。									

(5) 環境試料中の放射性核種

	章	式	<u>)</u>	料		単位	表 示 方 法
大	気	浮	遊	じ	ん	mBq/m^3	
降		=	下		物	Bq/m²	有効数字 2 桁で示す。最小位は定量
河井	川 水 戸	水	水、、	道 水 海	水	mBq/ℓ (³H lは Bq/ℓ)	下限値の最小の位。 定量下限値は別表1に示す。
表		土、	海	底	土	Bq/kg 乾	定量下限値未満は「ND」と表示する。 計数誤差は記載しない。
農	畜産物、	海産	食品	、指 標 生	三物	Bq/kg 生 (牛乳は Bq/0)	

別表1 環境試料中の放射性核種の定量下限値

华	三 人								
239+240D.	n L	ı	0.004	I	I	0.04	6000	0.007	
1317	-	ı	I	1	ı	1	-	1.0	
.506	N.	ı	80.0	I	I	I	700	0.04	
31.1	C	ı	ı	2	2	ı		l	
	$^{228}\mathrm{Ac}$	ı	ı	ı	ı	15			
出核種	²¹⁴ Bi	ı	ı	ı	ı	8		l	
	${ m M}_{0}$	I	4	100	I	40	J)	
	$^{7}\mathrm{Be}$	0.2	2	100	100	30	J	O	
	¹³⁷ Cs	0.03	0.2	9	9	3	0	4.0	
. 放	$^{134}\mathrm{Cs}$	0.03	0.2	9	9 8		0.4		
γ 線 放	OO ₀₉	0.03	0.2	9 9 8		3	0.4		
	28 Co	0.02	0.2	9	9	3	0.4		
	₅₉ Ье	0.04	0.4	12	12	9	0 0	0.0	
	$^{54}\mathrm{Mn}$	0.02	0.2	9	9	3	7 0	0.4	
中		mBq/m^3	$\mathrm{Bq/m}^2$	mBq/0	(3H \tau Bq/\earth{\earthgray})	Bq/kg 乾	Bq/kg 生	(牛乳はBq/0)	
- 1년 4년 1년		大気浮遊じん	降下物	河川水、水道水、井戸水	海	表土、海底土	農畜産物、海産食品、	指標生物	

5. 試料の採取方法等

試料	採 取 方 法 等								
大 気 浮 遊 じ ん	ろ紙(HE-40T)に集じんする。								
大気中のョウ素	活性炭カートリッジに捕集する。								
降下物	大型水盤で採取する。								
河 川 水	表面水を採取する。								
水道水、井戸水	給水栓等から採取する。								
表 土	表層 (0~5 cm) を採土器により採取する。								
精 米	モミ又は玄米を精米して試料とする。								
キャベツ、ハクサイ	葉部を試料とする。								
ア ブ ラ ナ	葉部及び蕾部を試料とする。								
バレイショ、ダイコン	外皮を除き、バレイショは塊茎部を、ダイコンは根部を試料とする。								
牛 乳	原乳を採取する。								
牛 肉	もも肉を試料とする。								
牧 草	地上約 10 cm の位置で刈り取る。								
松 葉	二年生葉を採取する。								
海水	表面海水を採取する。								
海 底 土	表面底質を採泥器により採取する。								
ヒ ラ メ 、 カ レ イアイナメ、ウスメバル	頭、骨、内臓を除き、可食部を試料とする。								
コ ウ ナ ゴ	全体を試料とする。								
ア ワ ビ	貝殻、内臓を除き、軟体部を試料とする。								
ホタテ、ムラサキイガイ	貝殻を除き、軟体部を試料とする。								
コンブ、チガイソ	根を除く全体を試料とする。								
ウニ	殻を除き、可食部を試料とする。								
タコ	目、内臓を除き、可食部を試料とする。								

	-
--	---

5. 空間放射線の測定地点図 及び環境試料の採取地点図

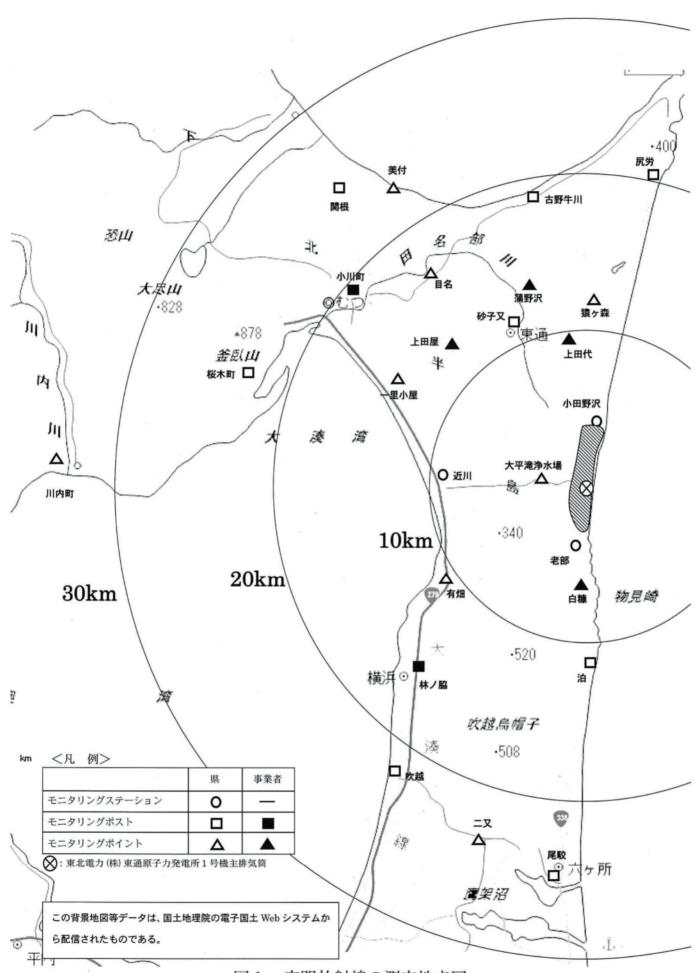
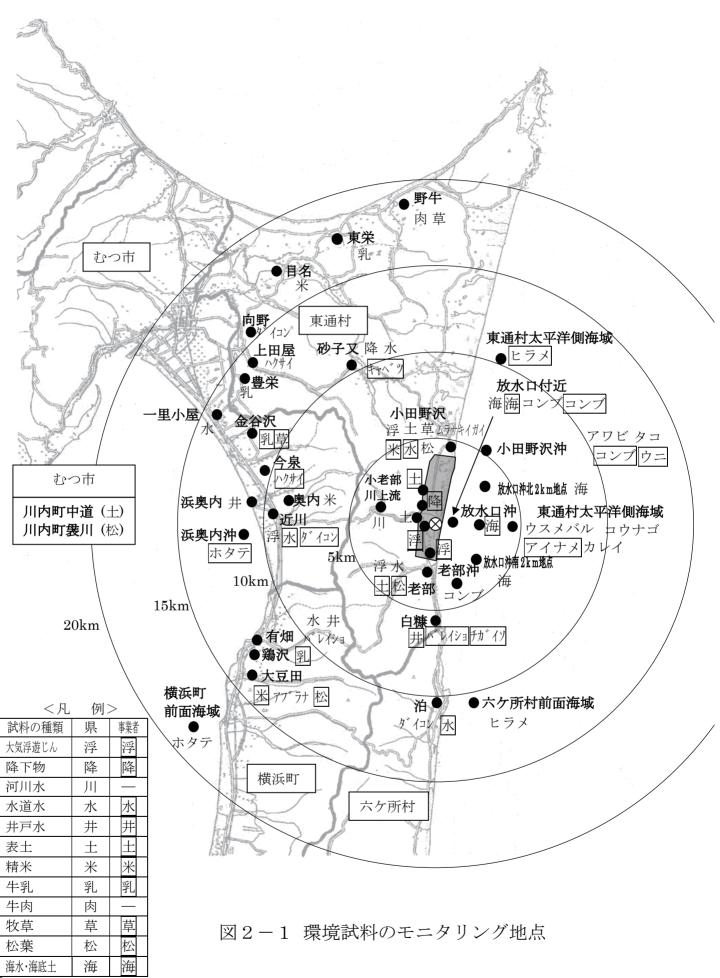



図1 空間放射線の測定地点図

※:東北電力株式会社東通原 子力発電所1号機排気筒

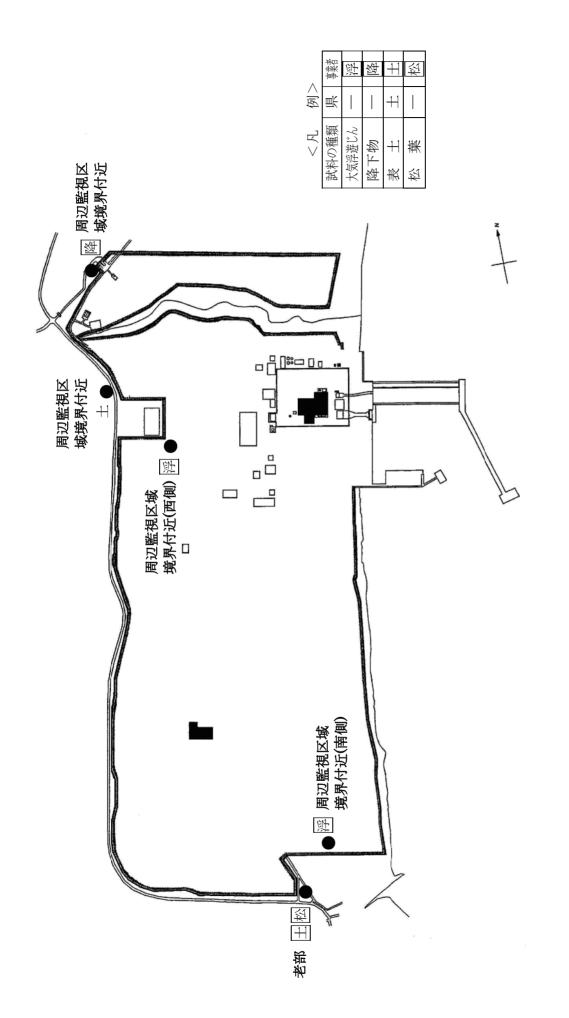


図2-2 環境試料のモニタリング地点 (発電所周辺)

表3 モニタリングカーの測定計画

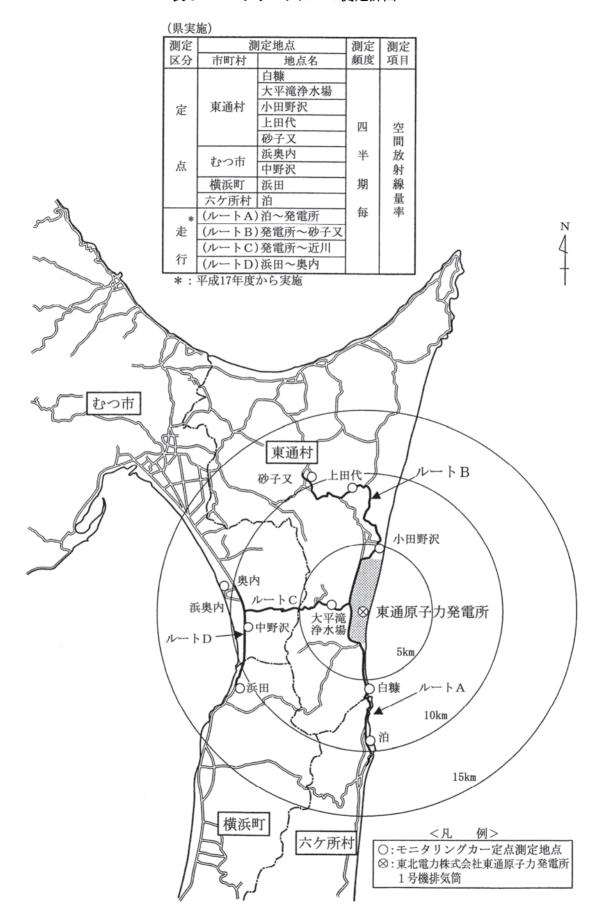


図3 モニタリングカーの定点測定地点及び走行測定ルート

	_
--	---

リサイクル燃料備蓄センター

表中の記号

-: モニタリング対象外を示す。

△: 今四半期の分析対象外を示す。

ND: 定量下限値未満を示す。分析室等で実施する環境試料中放射性核種の分析 測定については、測定条件や精度を一定の水準に保つため、試料・核種毎 に定量下限値を定めている(リサイクル燃料備蓄センターに係る環 境放射線モニタリング実施要領 4.数値の取扱方法(5)別表 1

#: 平常の変動幅を外れた測定値を示す。

1 調査概要

(1) 実施者

青森県原子力センター リサイクル燃料貯蔵株式会社

(2) 期間

平成 28 年 10 月~12 月 (平成 28 年度第 3 四半期)

(3) 内容

調査内容は、表 1-1 及び表 1-2 に示すとおりである。

(4) 測定方法

『リサイクル燃料備蓄センターに係る環境放射線モニタリング実施要領』による(「資料」参照)。

表 1-1 空間放射線

洞山	測		定			項	目	測	宁	粗	由	地					点						数		
例						' A	₹ □		例	Æ	定 頻		区					分	青	森	県	事	業	者	
	空間放射線量率		モ		タリ	リン	グン	ポフ	イト	連			続	施	設	周	辺	地	域		1			1	
D	R P L D	D 17	17 h	ス	徍	쑙	線	量	3	邕	Ī	月	施	設	周	辺	地	域		4			3		
K		. D (による		ン (関 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・		异 冰 里		積			算	比輔	交対 原	照(む	つ市	i川内]町)		1			_	

表 1-2 環境試料中の放射能(機器分析)

				青	弄 森 県	事	業者
				地	検 体 数	地	検 体 数
					γ		γ
試 料	Ø :	種	類		線		線
		1里	規	点	放	点	放
					出		出
					核		核
				数	種	数	種
陸 上	表	Ξ	土	Δ	Δ	Δ	Δ
試 料	指標生物 松		葉	1	1	1	1
比 較 対 照	表	-	土	\triangle	Δ	l	_
対 円 円 円	指標生物	松	葉	1	1	_	_
	計			2	2	1	1

[・]モニタリングポスト

空間放射線量率測定器及び積算線量計を備えた野外測定設備

・モニタリングポイント 積算線量計を備えた野外測定設備

2 調査結果

リサイクル燃料備蓄センターについては、環境放射線の事前調査を実施している。

平成 28 年度第 3 四半期(平成 28 年 10 月~12 月)における環境放射線の調査結果は、これまでと同じ水準**であった。

(1) 空間放射線

モニタリングポストによる空間放射線量率測定及び RPLD(蛍光ガラス線量計)による積算線量測定を実施した。

① 空間放射線量率(NaI)(図 2-1)

関根局、美付局における今四半期の平均値は 24、21 nGy/h、最大値は 92 nGy/h、最小値は 20、17 nGy/h であり、月平均値は 20 ~ 25 nGy/h であった。

平常の変動幅³²を上回った測定値は、すべて降雨等³³によるものと考えられる。関根局及び美付局に おいて過去の測定値³⁴の範囲を上回った測定値があったが、降雨雪とともに落下した天然放射性核種の 影響と考えられる。

② RPLD による積算線量(図 2-2)

測定値は 87 \sim 99 μ Gy/91 日 であり、すべて平常の変動幅の範囲内であった。

※1:「(概ね)これまでと同じ水準」

^{・「}これまでと同じ水準」は、測定結果について、平常の変動幅の範囲内である場合及び範囲を外れた要因が、降雨、降雪等の気象要因、 医療・産業に用いる放射性同位元素の影響等と判断される場合を示す。

^{・「}概ねこれまでと同じ水準」は、県内外の原子力施設からの影響により、一部の測定値が平常の変動幅を上回ったが、全体的にはこれまでと同じ水準(住民等の線量が法令に定める周辺監視区域外の線量限度(年間1ミリシーベルト)を十分に下回るような水準にあること)と 判断される場合を示す。

^{※2:「}平常の変動幅」は空間放射線量率(モニタリングポスト)については「過去の測定値」^{※4}の「平均値±(標準偏差の 3 倍)」。RPLD による積算線量については「過去の測定値」の「最小値~最大値」。

^{※3:「}降雨等」とは、「降雨、降雪、雷雨、積雪等の気象要因及び地理・地形上の要因等の自然条件の変化」、「医療・産業に用いる放射性同位元素等の影響」、「国内外の他の原子力施設からの影響」などである。空間放射線量率は、降雨雪時に雨や雪に取り込まれて地表面に落下したラドンの壊変生成物の影響により上昇し、積雪により大地からの放射線が遮へいされることにより低下する。また、医療・産業に用いる放射性同位元素等の影響により測定値が上昇することがある。

^{※4:「}過去の測定値」は空間放射線については前年度までの5年間(平成23~27年度)の測定値。

図 2-1 モニタリングポストによる空間放射線量率(NaI)測定結果

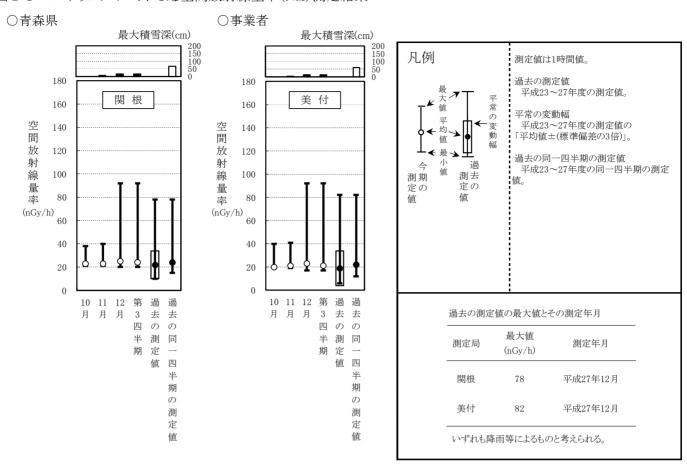
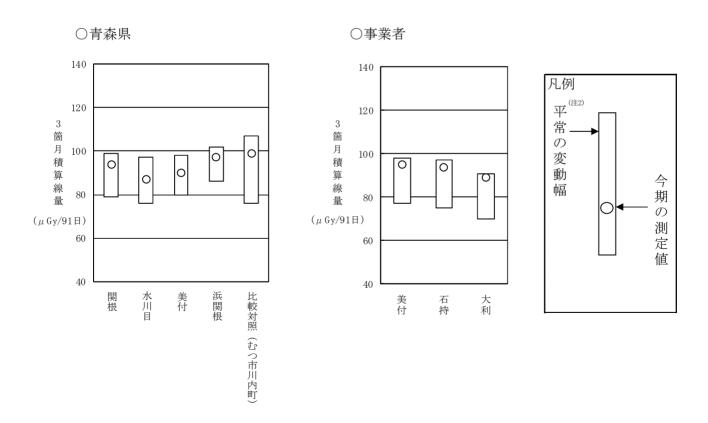



図 2-2 RPLD による積算線量測定結果(注1)

⁽注1) 測定値は宇宙線の一部及び自己照射の線量を含む。

⁽注2)「平常の変動幅」は平成23~27年度の3箇月積算線量の測定値の「最小値~最大値」。

(2)環境試料中の放射能

ゲルマニウム半導体検出器による機器分析(γ線放出核種分析)を実施した(表 2-1)。 セシウム-137の測定値は、すべてNDであり、平常の変動幅の範囲内であった。 その他の人工放射性核種についても、すべてNDであった。

表 2-1 γ 線放出核種分析結果

					☆目.	セシウム - 137							
試	料の	種	類	単 位	定量下限値	青検体数	森 県 測定値	事 検体数	業 者 測 定 値	平常の変動幅			
陸上	表		土	Bq/kg 乾	3	Δ	Δ	\triangle	Δ	ND \sim 26			
上試料	指標生物	松	葉	Bq/kg 生	0.4	1	ND	1 ND		ND			
比較市	表		土	Bq/kg 乾	3	Δ	Δ	1	_	$7 \sim 11$			
比較対照(む?市川内町)	指標生物	松	葉	Bq/kg 生	0.4	1	ND	1	_	ND			
	計			_	_	2	_	1	_	_			

[・]測定対象核種はマンガン-54、鉄-59、コバルト-58、コバルト-60、セシウム-134、セシウム-137、ベリリウム-7、カリウム-40、ビスマス-214、アクチニウム-228。なお、ビスマス-214、アクチニウム-228 については、土試料のみとする。

^{・「}平常の変動幅」は平成 20~27 年度の測定値の「最小値~最大値」。比較対照(むつ市川内町)については平成 15~27 年度の測定値の「最小値~最大値」。ただし、東京電力ホールディングス(株)福島第一原子力発電所の事故の影響が考えられる測定値については平成 25 年度の表土を除き平常の変動幅の設定に用いていない(平成 22 年度報 付 10、平成 23 年度報 付 16、平成 24 年度報 付 10 及び平成 25 年度報 付 7 参照)。

資料

核種の記号及び名称

⁷Be,Be-7 : ベリリウム-7
⁴⁰K,K-40 : カリウム-40
⁵⁴Mn,Mn-54 : マンガン-54
⁵⁹Fe,Fe-59 : 鉄-59
⁵⁸Co,Co-58 : コバルト-58
⁶⁰Co,Co-60 : コバルト-60
¹³⁴Cs,Cs-134 : セシウム-134
¹³⁷Cs,Cs-137 : セシウム-137

²¹⁴Bi,Bi-214 : ビスマス-214

²²⁸Ac,Ac-228 : アクチニウム-228

1. 青森県実施分測定結果

(1)空間放射線量率測定結果

①モニタリングポストによる空間放射線量率(NaI)測定結果

(単位:nGy/h)

測定局	測定月	平均	最大	最小	標準偏差	平常の変 動幅を外 れた時間 数	平常の変動 れた原因と (単位:	:時間数	平常の 変動幅	過去の 測定値 の範囲	過去の 同一四 半期の 測定値	備考
						(単位: 時間)	施設起因	降雨等		▽/単凸 <u>/11</u>	の範囲	
	10月	23	38	21	1.9	3	-	3				
関根	11月	23	40	21	2.3	5	-	5	-		15~78	
	12月	25	92	20	7.6	56	-	56	(22 ± 12)	10~78	(24)	
	第3四半期	第3四半期 24 92 20 4.8 64			64							

- ・測定値は1時間値。
- ・測定時間数は3箇月間で約2,200時間。
- ・測定値は3 MeVを超える高エネルギー成分を含まない。
- ・「平常の変動幅」は「過去の測定値」の「平均値±(標準偏差の3倍)」。
- ・「過去の測定値の範囲」は平成23~27年度の測定値の「最小値~最大値」。
- ・「過去の同一四半期の測定値の範囲」は「過去の測定値」のうち同一四半期の測定値の「最小値~最大値」。また、括弧 内の数値は平均値。
- ・「施設起因」は、監視対象施設であるリサイクル燃料備蓄センターに起因するもの。ただし、施設が操業前であるため、表には「-」として記載している。
- ・「降雨等」に分類する要因としては、「降雨、降雪、雷雨、積雪等の気象要因及び地理・地形上の要因等の自然条件の変化」、「医療・産業に用いる放射性同位元素等の影響」、「国内外の他の原子力施設からの影響」などが挙げられる。

(参考)モニタリングポストによる空間放射線量率(電離箱)測定結果

(単位:nGy/h)

測定局	測定月	平均	最大	最小	標準偏差	備 考
	10月	53	68	50	2.3	
目目 ↓ 日	11月	54	69	50	2.6	
関根	12月	56	120	50	7.6	
	第3四半期	54	120	50	5.0	

- ・測定値は1時間値。
- ・測定値は3 MeVを超える高エネルギー成分を含む。

(2) 積算線量測定結果(RPLD)

	測定地点					測 定 期 間(日数)	3 箇 月 積算線量 (μ Gy/91日)	平常の変動幅 (μ Gy/91日)	備考	
			関		根	H28. 9.28~H28.12.27 ((90)	94	79 ~ 99	
			水	Ш	目	II		87	76 ~ 97	
む	2	市	美		付	II		90	80 ~ 98	
10		113	浜	関	根	II		97	86 ~ 102	
			比 (む	較 対 つ市川内	町)	IJ		99	76 ~ 107	

- ・測定値は宇宙線の一部及び自己照射の線量を含む。
- ・「3箇月積算線量」は測定期間の測定値を91日当たりに換算し整数で示した値。
- ・「平常の変動幅」は平成23~27年度の3箇月積算線量の測定値の「最小値~最大値」。

(3)環境試料中の放射能測定結果

	試 料	. <i>b</i>	極	Ħ v	Ыh	Ti.	採取年月日	単位			機		器	分		析			備考
	PV 14	711	1/4	дх	FE	灬		平 仏	⁵⁴ Mn	⁵⁹ Fe	⁵⁸ Co	⁶⁰ Co	¹³⁴ Cs	¹³⁷ Cs	⁷ Be	⁴⁰ K	²¹⁴ Bi	²²⁸ Ac	加 与
木	.\	葉	浜	,	/	平	H28. 11.7	Bq/kg生	ND	ND	ND	ND	ND	ND	44	83	_	-	
1	4		比 (む・	較 つ 市	対 川内	照 町)	H28. 11.8	Dq/ kg主	ND	ND	ND	ND	ND	ND	66	78	_	_	

測定値は試料採取日に補正した値。

(4)気象観測結果

①降水量•積雪深

		降水量		ź	積雪深(cm)		
測定局	測定月	(mm)	平均	最大	最 小	過去の値		
			平均	取 八	取小	平均	最大	
	10月	86.5	0	0	0	0	0	
関根	11月	76.0	0	7	0	0	10	
	12月	194.5	2	16	0	8	65	
	第3四半期	357.0	1	16	0	3	65	

- ・測定値は「地上気象観測指針(平成14年気象庁)」に基づく1時間値。
- ・積雪深における「過去の値」は、平成23~27年度の平均値及び最大値。

2. 事業者実施分測定結果

(1) 空間放射線量率測定結果

①モニタリングポストによる空間放射線量率 (NaI) 測定結果 (単位:nGy/h)

測定局	測定月	平均	最大	最小	標準偏差	平常の変 動幅を外 れた時間 数	平常の変動 れた原因と (単位:	:時間数	平常の 変動幅	過去の 測定値 の範囲	過去の 同一期の 別定値	備考
						(単位: 時間)	施設起因	降雨等			例を他の範囲	
	10月	20	40	19	2.1	1	-	1				
 美付	11月	21	41	19	2.5	2	-	2	4~34	6~82	12~82	
天门	12月	23	92	17	8.3	52	-	52	(19 ± 15)	0, 0,2	(22)	
	第3四半期	21	92	17	5.3	55	-	55				

- ・ 測定値は1時間値。
- ・ 測定時間数は3箇月間で約2,200時間。
- ・ 測定値は3 MeVを超える高エネルギー成分を含まない。
- ・「平常の変動幅」は、「過去の測定値」の「平均値±(標準偏差の3倍)」。
- ・「過去の測定値」の範囲は、平成23~27年度の測定値の「最小値~最大値」。
- 「施設起因」は、監視対象施設であるリサイクル燃料備蓄センターに起因するもの。ただし、施設が操業前であるため、表には「-」として記載している。
- ・「降雨等」に分類する要因としては、「降雨、降雪、雷雨、積雪等の気象要因及び地理・地形上の要因等の自然条件の変化」、「医療・産業に用いる放射性同位元素等の影響」、「国内外の他の原子力施設からの影響」などが挙げられる。

(参考) モニタリングポストによる空間放射線量率(電離箱)測定結果 (単位:nGy/h)

測定局	測定月	平均	最大	最小	標準偏差	備考
	10月	54	74	52	2.2	
美 付	11月	55	75	52	2.6	
天刊	12月	57	122	50	8.1	
	第3四半期	56	122	50	5.3	

- ・ 測定値は1時間値。
- ・ 測定値は3 MeVを超える高エネルギー成分を含む。

(2) 積算線量測定結果(RPLD)

測定	地点	i	測 定 期 間(日数)		3 箇 月 積算線量 (μ Gy/91日)	平常の変動幅 (_μ Gy/91日)	備考
むつ市	美	付	H28. 9. 28∼ H28. 12. 27	(90)	95	77 ~ 98	
東通村	石	持	n		94	75 ~ 97	
来	大	利	n		89	70 ~ 91	

- ・測定値は宇宙線の一部及び自己照射の線量を含む。
- ・「3箇月積算線量」は測定期間の測定値を91日当たりに換算し整数で示した値。
- ・「平常の変動幅」は、平成23~27年度の3箇月積算線量の測定値の「最小値~最大値」。

(3)環境試料中の放射能測定結果

試料名 採 取 地	抠 肋	掛占	赵	単位			機		器 分		析				借 孝
	(地点		単 仏	⁵⁴ Mn	⁵⁹ Fe	⁵⁸ Co	⁶⁰ Co	¹³⁴ Cs	¹³⁷ Cs	⁷ Be	⁴⁰ K	²¹⁴ Bi	²²⁸ Ac	備考	
指標生物 (松葉)	北	 根	H28.11.16	Bq/kg 生	ND	ND	ND	ND	ND	ND	53	67	-	1	

・測定値は試料採取日に補正した値。

(4) 気象観測結果

①降水量·積雪深

					積 雪 深(cm))		
測定局	測定月	降水量 (mm)	平均	最大	最 小	過去の値		
			+ 12	取八	取 /1、	平均	最大	
	10月	85.0	0	0	0	0	0	
美付	11月	66.5	0	4	0	0	8	
天 17	12月	165.0	1	13	0	6	61	
	第3四半期	316.5	0	13	0	2	61	

- ・ 測定値は「地上気象観測指針(平成14年気象庁)」に基づく1時間値。
- ・ 積雪深における「過去の値」は、平成23~27年度の同一時期の平均値及び最大値。

3. リサイクル燃料備蓄センターに係る
 環境放射線モニタリング実施要領

リサイクル燃料備蓄センターに係る環境放射線モニタリング実施要領

平成 21 年 3 月策定 平成 22 年 3 月改訂 平成 26 年 4 月改訂 平成 27 年 3 月改訂 平成 28 年 11 月改訂

1. 趣旨

「リサイクル燃料備蓄センターに係る環境放射線モニタリング計画」により環境放射線の測定 方法、分析方法等について必要な事項を定めるものとする。

2. 測定装置及び測定方法

(1) 空間放射線等

石口	青	泉	リサイクル燃料貯蔵	株式会社
項目	測定装置	測定方法	測定装置	測定方法
空間放射線 量 率	 ・低線量率計 3″ φ×3″ NaI(TI)シンチレーション検出器(温度補償方式加温装置付)、G(E)関数荷重演算方式 ・高線量率計14 Ø、6 気圧球形窒素ガス+アルゴンガス加圧型電離箱検出器(加温装置付) 	・測 定 法 文部科学省編「連続 モニタによる環境γ 線測定法」(平成8年 改訂)に準拠 連続 測定 (1時間値) ・測定位置 地上1.8 m ・校正線源	・低線量率計:同 左 ・高線量率計 14 Q、8 気圧球形窒素ガス+アルゴンガス加圧型電離箱検出器(加温装置付)	・同左

话日	青	· 果	リサイクル燃料貯蔵株式会社			
項目	測定装置	測定方法	測定装置	測定方法		
積算線量	・蛍光ガラス線量計 (RPLD)	・測定法 文部科学量報「生物」 で制定を 大学のでは、14年) では、では、14年) では、では、14年) では、では、14年) では、では、14年) では、では、14年) では、では、14年) では、では、14年) では、では、14年) では、14年 では、1	·同 左			

(2) 環境試料中の放射能

石口	青	森 県	リサイクル燃料	片
項目	測定装置	測定方法	測定装置	測定方法
機器分析 救 線 放 種	・ゲルマニウム半導体検出器	・測定法 文部科学省編「ゲルマニウム半導体機出器によるガー」 (平線スペートリー」 (平成4年改訂) 文部科学省編「ゲルマニウム半導体検のための試料の 機器分析の配和57年) に準拠 ・測定試料形態 表 生物 ・測定容器 U-8容器 ・測定時間 80,000秒	·同 左	

(3) 気 象

項	目	青	森 県	リサイクル燃	料貯蔵株式会社
中	口	測定装置	測定方法	測定装置	測定方法
降	水量	·雨雪量計 [転倒升方式] (気象庁検定付)	測定法:指針*に準拠 測定位置:地上約2m	・同 左	
感	雨	·感雨雪器 [電極式]	測定法:指針*に準拠 測定位置:地上約2m		
積	雪 深	・積雪計 [レーザー式] (気象庁検定付)	測定法:指針*に準拠 測定位置:地上約3m	・積雪計 [超音波式] (気象庁検定付)	測定法:指針*に準拠 測定位置:地上約3m

※:「発電用原子炉施設の安全解析に関する気象指針」(平成13年改訂 原子力安全委員会)

3. 環境試料中の放射能測定対象核種

⁵⁴Mn、⁵⁹Fe、⁵⁸Co、⁶⁰Co、¹³⁴Cs、¹³⁷Cs、⁷Be、⁴⁰K、²¹⁴Bi、²²⁸Acなお、²¹⁴Bi、²²⁸Acについては、土試料のみとする。

4. 数値の取扱方法

(1) 空間放射線量率

単 位	表示方法
nGy/h	整数で示す。

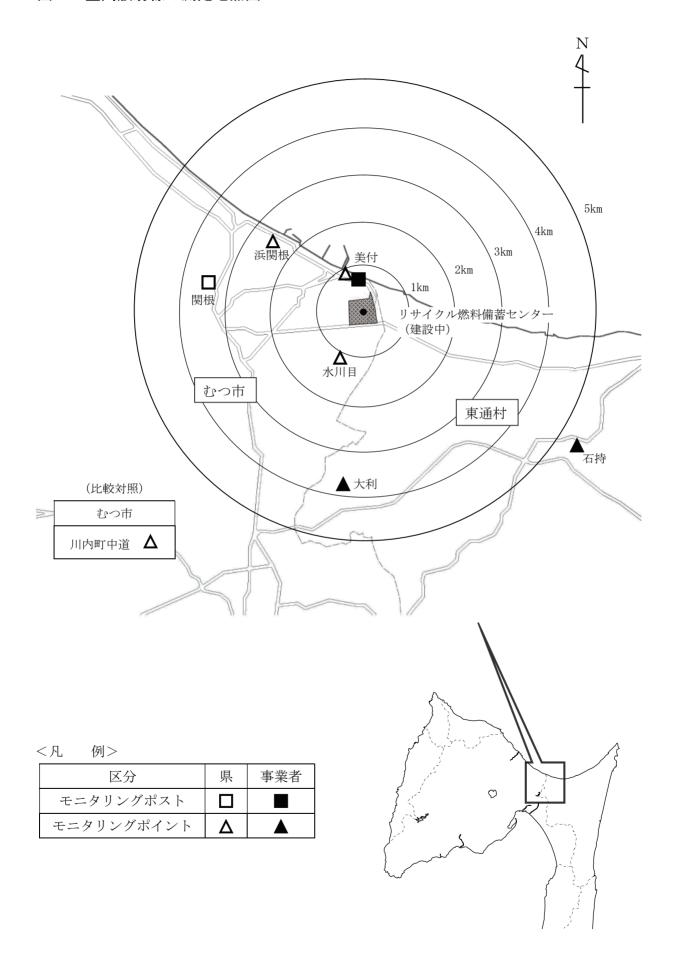
(2) 積算線量

単位	表示方法
μ Gy/ 91 日 μ Gy/365 日	3 箇月積算線量は、測定期間の測定値を 91 日当たりに換算し、整数で示す。 年間積算線量は、各期間の測定値を合計した後、365 日当たりに換算し、整数 で示す。

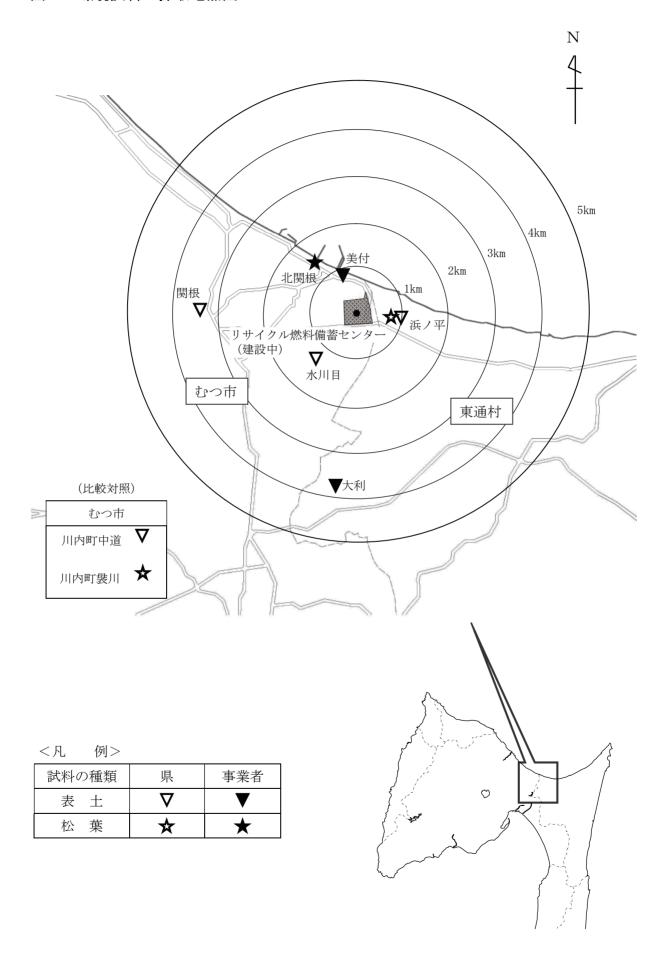
(3) 環境試料中の放射性核種

試 料	単位	表示方法
表土	Bq/kg 乾	有効数字 2 桁で示す。最小位は定量下限値の最小の位。 定量下限値は別表 1 に示す。
指標生物	Bq/kg 生	定量下限値未満は「ND」と表示する。 計数誤差は記載しない。

別表 1 環境試料中の放射性核種の定量下限値


121245	六 1 十		γ 線放出核種						/±: ±z.			
試料	単位	⁵⁴ Mn	⁵⁹ Fe	⁵⁸ Co	⁶⁰ Co	¹³⁴ Cs	¹³⁷ Cs	⁷ Be	$^{40}\mathrm{K}$	²¹⁴ Bi	²²⁸ Ac	備考
表土	Bq/kg 乾	3	6	3	3	3	3	30	40	8	15	
指標生物	Bq/kg 生	0.4	0.8	0.4	0.4	0.4	0.4	6	6	_	_	

5. 試料の採取方法等


試 料	採取方法等
表土	表層(0~5 cm)を採土器により採取する。
松葉	二年生葉を採取する。

4.空間放射線の測定地点図及び環境試料の採取地点図

図1 空間放射線の測定地点図

図2 環境試料の採取地点図

評 価 方 法 等

- 184	_
-------	---

1. 原子燃料サイクル施設に係る環境放射線等モニタリング結果の評価方法

原子燃料サイクル施設に係る環境放射線等モニタリング結果の評価方法

平成 2年4月策定 平成13年7月改訂 平成18年4月改訂 平成28年3月改訂

原子燃料サイクル施設に係る環境放射線等モニタリング結果の評価については、「同施設に係る環境放射線等モニタリング構想等」の考え方に基づくほか、「環境放射線モニタリング指針(平成20年3月策定、平成22年4月一部改訂 原子力安全委員会)」等に準拠して行うものであり、同施設の特徴を踏まえながら下記のとおり適正な評価を行うものとする。

1. 測定値の取り扱い

(1) 測定値の変動と平常の変動幅

空間放射線及び環境試料中の放射能の測定結果は、

- ① 試料採取方法・処理方法、測定器の性能、測定方法等の測定条件の変化
- ② 降雨、降雪、逆転層の出現等の気象要因、及び地理・地形上の要因等の自然条件の 変化
- ③ 核爆発実験等の影響
- ④ 原子力施設の運転状況の変化

などにより、変動を示すのが普通である。これらの要因のうち③は別として、測定条件がよく管理されており、かつ原子力施設が平常運転を続けている限り、測定値はある幅の中に納まる確率が高く、これを「平常の変動幅」と呼ぶこととする。この平常の変動幅は、分析測定上の問題、環境の変化、施設からの予期しない放出などの原因調査が必要な測定値(データ)をふるい分けるために用いる。

(2) 平常の変動幅の決定

空間放射線(空間放射線量率、積算線量)、環境試料中の放射能濃度等についてそれぞれ平常の変動幅を次のように定める。

① 空間放射線量率

連続モニタの測定値については、過去の測定値の〔平均値±(標準偏差の3倍)〕を 平常の変動幅とする。

② 積算線量

蛍光ガラス線量計 (RPLD) 測定値の91日換算値については、過去の測定値の最 小値~最大値を平常の変動幅とする。

③ 環境試料中の放射能濃度等

環境試料中の放射能濃度等については、過去の測定値の最小値~最大値を平常の変動幅とし、環境試料の種類の区分は別表のとおりとする。

④ 平常の変動幅の期間

ア 空間放射線

5年を限度とし、調査年度に近い時期を用いる。また、測定地点周辺における工事などにより、測定地点のバックグラウンドレベルに大きな変化があった場合は、それ以前のデータは参考値として扱い、1年以上経過した時点で改めて設定する。

イ 環境試料中の放射能濃度等

調査を開始した年度から調査年度の前年度までとする。

2. 測定結果の評価

(1) 空間放射線の測定結果の評価

空間放射線の測定結果については、測定値が平常の変動幅の範囲内にあるかどうかを確認する。測定値が平常の変動幅を外れた場合は以下の項目について調査を行い、原因を明らかにする。

- ① 計測系及び伝送処理系の健全性
- ② 降雨等による自然放射線の増加による影響
- ③ 地形、地質等の周辺環境状況の変化
- ④ 医療・産業用放射性同位元素等の影響
- ⑤ 核爆発実験等の影響
- ⑥ 県内外の原子力施設からの影響

また、測定値が平常の変動幅を下回る場合は、積雪の影響のほか、機器の故障が考えられるので点検する。

(2) 環境試料中の放射能濃度等の測定結果の評価

環境試料中の放射能濃度等の測定結果についても、空間放射線と同様に、測定値が平常の変動幅の範囲内にあるかどうかを確認する。測定値が平常の変動幅を外れた場合は、以下の項目について調査を行い、原因を明らかにする。

- ① 試料採取の状況
- ② 前処理、分析・測定の妥当性
- ③ 核爆発実験等の影響
- ④ 県内外の原子力施設からの影響

(3) 施設寄与の有無の判断

測定値が平常の変動幅の範囲内にあるかどうかにかかわらず、原子燃料サイクル施設からの寄与の有無を次の事項を踏まえて判断し、測定結果に基づく線量の推定・評価に資する。

- ① 施設の操業・運転状況 (放出源情報等)
- ② 気象・海象
- ③ 過去の測定値の変動状況
- ④ 空間放射線量率についてはγ線のエネルギー情報、環境試料中の放射性核 種については安定元素との比や他の核種との比など

(4) 測定結果に基づく線量の推定・評価

測定結果に施設寄与が認められた場合には、1年間の外部被ばくによる実効線量と内部 被ばくによる預託実効線量とに分けて別々に算出し、その結果を総合することで施設起因 の線量の推定・評価を行う。

測定結果に基づく線量の推定・評価は原則として年度ごとに行う。具体的な算出方法は、「測定結果に基づく線量算出要領(平成28年3月 青森県)」に基づくものとする。

(5) 蓄積状況の把握

長期にわたる蓄積状況の把握は、主として河底土、湖底土、表土及び海底土の核種分析 結果から、有意な差が見られるかどうかを判定するものとする。

(6) 放出源情報に基づく線量の推定・評価

放出源情報に基づく実効線量の計算は、施設からの年間放出実績をもとに「再処理事業所 再処理事業指定申請書及びその添付書類(平成23年2月14日許可)」に示されるものと同様の計算モデル及びパラメータを用いて行う。

(7)総合評価

以上の測定結果及び線量評価結果を、青森県原子力施設環境放射線等監視評価会議において、総合的に評価し、モニタリングの基本目標である、原子燃料サイクル施設周辺住民等の健康と安全を守るため、環境における同施設に起因する放射性物質又は放射線による周辺住民等の線量が、法令に定める周辺監視区域外の線量限度(実効線量について年間1ミリシーベルト)を十分下回っていることを確認する。

3. そ の 他

本評価方法については、今後、必要に応じ適宜検討を加える。

[解 説]

1. 〔平均値±(標準偏差の3倍)〕

連続モニタから、よく管理された条件のもとで測定値が得られる場合には、個々の数値の 99.73%がこの範囲に納まることを意味する。

2. 有意な差

測定値に変動が見られた場合、その変動が単なる統計上のばらつきではなく、実際に測定対象が変動していると考えられること。

3. 実効線量

人体の各組織は放射線に対する感受性がそれぞれ異なる。その違いを考慮して定められた係数(組織加重係数)を各組織が受けた線量にかけて加え合わせたものが実効線量であり、防護の目的で放射線のリスクを評価する尺度である。

4. 預託実効線量

人体内に取り込まれた放射性核種がある期間体内に残留することを考慮し、成人については摂取後50年間、子供では摂取した年齢から70歳までに受ける実効線量を積算したものが預託実効線量である。

別表 環境試料の種類の区分

試	料(り 和	重	類
	大 気	浮	遊	じん
	大 気	(気	体	状)
	大			気
	大 気	(水	蒸気	状)
	雨			水
	降	下		物
	河	Ш		水
	湖	沼		水
	水	道		水
	井	戸		水
	河	底		土 土 土
陸上試料	湖	底		土
	表			
	牛 乳	(原		乳)
	精			米
			ナイ、キ	
	野菜		イニ	*
		ナガイ	モ、バレ	/イショ
	牧			草
	デン	٦,	コ	ー ン
	淡水産食品	ワ		サギ
		ン	ジ	サ ギ ミ 葉
	指標生物	松		栗
	海			水 土
	海	底		
		ヒラ	メ、	カレイ
		1		カ
海洋試料	海産食品	ホタ		アワビ
	117 /22 / 7 / 7	ヒラ	ッメ	ガニ
		ウ		=
		コ	ン	ブ
	指標生物	チ		イソ
		ムラ		イガイ
	大 気		<u> </u>	じん
	大 気(気	体 :	犬)
比較対照	大			気
(青森市)	大 気(水蒸	気 :	犬)
(14 NN 114)	表			土
	精			来 葉
	指標生物	松		葉

2. 東 通 原 子 力 発 電 所 に 係 る 環境放射線モニタリング結果の評価方法

東 通 原 子 力 発 電 所 に 係 る 環境放射線モニタリング結果の評価方法

平成15年2月策定 平成18年4月改訂 平成28年3月改訂

東通原子力発電所に係る環境放射線モニタリング結果の評価については、「東通原子力発電 所に係る環境放射線モニタリング基本計画」の考え方に基づくほか、「環境放射線モニタリン グに関する指針(平成20年3月策定、平成22年4月一部改訂 原子力安全委員会)」等に 準拠して、以下のとおり適正な評価を行うものとする。

1. 測定値の取り扱い

(1) 測定値の変動と平常の変動幅

空間放射線及び環境試料中の放射能の測定結果は、

- ① 試料採取方法・処理方法、測定器の性能、測定方法等の測定条件の変化
- ② 降雨、降雪、逆転層の出現等の気象要因、及び地理・地形上の要因等の自然 条件の変化
- ③ 核爆発実験等の影響
- ④ 原子力施設の運転状況の変化

などにより、変動を示すのが普通である。これらの要因のうち③は別として、測定条件がよく管理されており、かつ原子力施設が平常運転を続けている限り、測定値はある幅の中に納まる確率が高く、これを「平常の変動幅」と呼ぶこととする。この平常の変動幅は、分析測定上の問題、環境の変化、施設からの予期しない放出などの原因調査が必要な測定値(データ)をふるい分けるために用いる。

(2) 平常の変動幅の決定

空間放射線(空間放射線量率、積算線量)、環境試料中の放射能濃度についてそれぞれ平常の変動幅を次のように定める。

① 空間放射線量率

連続モニタの測定値については、過去の測定値の〔平均値±(標準偏差の3倍)〕を 平常の変動幅とする。

② 積算線量

蛍光ガラス線量計(RPLD)測定値の91日換算値については、過去の測定値の 最小値~最大値を平常の変動幅とする。

③ 環境試料中の放射能濃度

環境試料中の放射能濃度については、過去の測定値の最小値~最大値を平常の変動幅とし、環境試料の種類の区分は別表のとおりとする。

④ 平常の変動幅の期間

ア 空間放射線

5年を限度とし、調査年度に近い時期を用いる。また、測定地点周辺における工事などにより、測定地点のバックグラウンドレベルに大きな変化があった場合は、 それ以前のデータは参考値として扱い、1年以上経過した時点で改めて設定する。

イ 環境試料中の放射能濃度

調査を開始した年度から調査年度の前年度までとする。

2. 測定結果の評価

(1)空間放射線の測定結果の評価

空間放射線の測定結果については、測定値が平常の変動幅の範囲内にあるかどうかを確認する。測定値が平常の変動幅を外れた場合は以下の項目について調査を行い、原因を明らかにする。

- ① 計測系及び伝送処理系の健全性
- ② 降雨等による自然放射線の増加による影響
- ③ 地形、地質等の周辺環境状況の変化
- ④ 医療・産業用放射性同位元素等の影響
- ⑤ 核爆発実験等の影響
- ⑥ 県内外の原子力施設からの影響

また、測定値が平常の変動幅を下回る場合は、積雪の影響のほか、機器の故障が考えられるので点検する。

(2) 環境試料中の放射能濃度の測定結果の評価

環境試料中の放射能濃度の測定結果についても、空間放射線と同様に、測定値が平常の変動幅の範囲内にあるかどうかを確認する。測定値が平常の変動幅を外れた場合は、以下の項目について調査を行い、原因を明らかにする。

- ① 試料採取の状況
- ② 前処理、分析・測定の妥当性
- ③ 核爆発実験等の影響
- ④ 県内外の原子力施設からの影響

(3) 施設寄与の有無の判断

測定値が平常の変動幅の範囲内にあるかどうかにかかわらず、東通原子力発電所から

の寄与の有無を次の事項を踏まえて判断し、測定結果に基づく線量の推定・評価に資する。

- ① 施設の操業・運転状況 (放出源情報等)
- ② 気象・海象
- ③ 過去の測定値の変動状況
- ④ 空間放射線量率についてはγ線のエネルギー情報、環境試料中の放射性核種 については安定元素との比や他の核種との比など

(4) 測定結果に基づく線量の推定・評価

測定結果に施設寄与が認められた場合には、1年間の外部被ばくによる実効線量と内部被ばくによる預託実効線量とに分けて別々に算出し、その結果を総合することで施設起因の線量の推定・評価を行う。

測定結果に基づく線量の推定・評価は原則として年度ごとに行う。具体的な算出方法は、「測定結果に基づく線量算出要領(平成28年3月 青森県)」に基づくものとする。

(5) 蓄積状況の把握

長期にわたる蓄積状況の把握は、主として表土及び海底土の核種分析結果から、有意な差が見られるかどうかを判定するものとする。

(6) 放出源情報に基づく線量の推定・評価

放出源情報に基づく評価は、「発電用軽水型原子炉施設周辺の線量目標値に関する指針(昭和50年5月決定 原子力委員会、平成13年3月改訂 原子力安全委員会)」 に定める線量目標値(実効線量について年間50マイクロシーベルト)と比較して行う。

放出源情報に基づく実効線量の計算は、施設からの年間放出実績をもとに「発電用軽水型原子炉施設周辺の線量目標値に対する評価指針(昭和51年9月決定 原子力委員会、平成13年3月改訂 原子力安全委員会)」に準拠して行う。

(7)総合評価

以上の測定結果及び線量評価結果を、青森県原子力施設環境放射線等監視評価会議に おいて、総合的に評価し、モニタリングの基本目標である、東通原子力発電所周辺住民 等の健康と安全を守るため、環境における同発電所に起因する放射性物質又は放射線に よる周辺住民等の線量が、法令に定める周辺監視区域外の線量限度(実効線量について 年間1ミリシーベルト)を十分下回っていることを確認する。

3. その他

本評価方法については、今後、必要に応じ適宜検討を加える。

[解 説]

1. 〔平均値±(標準偏差の3倍)〕

連続モニタから、よく管理された条件のもとで測定値が得られる場合には、個々の数値の 99.73%がこの範囲に納まることを意味する。

2. 有意な差

測定値に変動が見られた場合、その変動が単なる統計上のばらつきではなく、実際に測定対象が変動していると考えられること。

3. 実効線量

人体の各組織は放射線に対する感受性がそれぞれ異なる。その違いを考慮して定められた係数(組織加重係数)を各組織が受けた線量にかけて加え合わせたものが実効線量であり、防護の目的で放射線のリスクを評価する尺度である。

4. 預託実効線量

人体内に取り込まれた放射性核種がある期間体内に残留することを考慮し、成人については摂取後50年間、子供では摂取した年齢から70歳までに受ける実効線量を積算したものが預託実効線量である。

別表 環境試料の種類の区分

試	料	0	D	種	類					
	大	気	浮	遊	じ	λ				
	降			下						
	河	河川								
	水	水 道								
	井	井 戸								
	表					土				
	精					米				
陸上試料			バ	ν .	イシ	田				
	野	菜	ダ	イ	コ	ン				
	到	*	ハク	サイ、	・キャ	ベツ				
			ア	ブ	ラ	ナ				
	牛	乳	(原	乳)				
	牛					肉				
	牧					草				
	指 標	生物	松			葉				
	海					水				
	海			底		土				
			1		イ、ウス					
					、アイナ					
海洋試料	海産	食品	ホタ	アテ、	, ア !	フ ビ				
			コ	•	<u> </u>	ブ				
			タ			コ				
			ウィ	_13		=				
	指 標	生物	チ	ガ	<u> </u>	ソ				
	±		ムラ	, , ,	キイク	ガ イ				
比較対照 (むつ市川内町)	表	LL 11-6-1	44\			土				
(47.51l1\ll\1.1ml)	指標	生 物	松			葉				

3. 測定結果に基づく線量算出要領

測定結果に基づく線量算出要領

「平成28年3月策定〕

1. 目 的

「原子燃料サイクル施設に係る環境放射線等モニタリング結果の評価方法(平成 28 年 3 月改訂 青森県)」及び「東通原子力発電所に係る環境放射線モニタリング結果の評価方法(平成 28 年 3 月改訂青森県)」に基づき推定・評価する施設起因の線量の具体的な算出方法を定めるものである。

2. 線量の推定・評価

測定結果に基づく施設起因の線量の推定・評価は、測定値が平常の変動幅の範囲内かどうかにかかわらずモニタリング対象施設からの影響が認められた場合、1年間の外部被ばくによる実効線量と内部被ばくによる預託実効線量をそれぞれ算出し、その結果を総合することで行う。

(1) 外部被ばくによる実効線量

モニタリングステーション及びモニタリングポストにおける実効線量の算出においては、NaI(TI)シンチレーション検出器による空間放射線量率及び大気中の気体状 β 放射能濃度を用いることとする。それぞれの測定結果に施設寄与が認められた場合は、地点ごとに空間放射線量率(1 時間値)から γ 線による実効線量と、大気中の気体状 β 放射能濃度(1 時間値)から β 線による実効線量を算出し、両者を合計する。ただし、 β 線による実効線量の算出は、原子燃料サイクル施設に係るモニタリングステーションを対象とする。

モニタリングポイントにおいて RPLD による積算線量の測定結果に施設寄与が認められた場合は、 地点ごとに積算線量から実効線量を算出する。

外部被ばくによる実効線量は、上記の地点ごとの実効線量のうち最も高い値とする。

1) γ線による実効線量

① NaI(TI)シンチレーション検出器の測定結果に基づく算出

空間放射線量率については、SCA 弁別法^{注1}を用いて求めた人工放射性核種による線量率(以下「推定人工線量率」という。)に測定時間(1h)を乗じて1年間分すべて積算し、換算係数 0.8 ^{注2}を乗じて実効線量を算出する(式(1))。

実効線量(mSv) = Σ (推定人工線量率(nGy/h)×1(h)) ×0.8(Sv/Gy) /10⁶(nSv/mSv) ・・・式(1) 正負すべての積算値(nGv)

※SCA 弁別法による推定人工線量率算出方法

空間放射線量率を目的変数、SCA(Bi)及び SCA(TI)を説明変数とする重回帰分析を行い、得られた重回帰式(式(2))から自然放射性核種寄与分の線量率(以下「推定自然線量率」という。)を求め、空間放射線量率から推定自然線量率を差し引いて推定人工線量率を算出する(式(3))。

重回帰式の定数(式(2)の a,b,c)は、使用済燃料のせん断・溶解期間以外で施設寄与を含まない 測定値から、原則として四半期ごとに算出する。

推定自然線量率 $(nGy/h) = a \times SCA(Bi) + b \times SCA(Tl) + c$ · · · 式(2)

SCA(Bi):Bi-214 エネルギー領域(1.65~2.5MeV)の計数率(cps) SCA(Tl):Tl-208 エネルギー領域(2.51~3MeV)の計数率(cps) a,b,c:1時間値を用いた重回帰分析により求めた定数

推定人工線量率(nGy/h) = 空間放射線量率(nGy/h) - 推定自然線量率(nGy/h) ···式(3)

注 1 K.Kumagai, H.Ookubo and H.Kimura, "Discrimination between natural and other gamma ray sources from environmental gamma ray dose rate monitoring data" Radiation Protection Dosimetry, 167,293-297(2015)

注2 環境放射線モニタリング指針(平成20年3月原子力安全委員会)解説 I 参照

② RPLD の測定結果に基づく算出

積算線量については、四半期ごとの測定結果に施設寄与が認められた場合、その測定値から原則として過去5年間の第1~第3四半期の施設寄与が認められない測定値の平均値をバックグラウンドとして差し引き、1年間分積算した値に0.8を乗じて実効線量を算出する(式(4))。ただし、第4四半期については積雪の状況を考慮してバックグラウンドを推定する。

実効線量 $(mSv) = \Sigma$ (施設寄与分の積算線量 $(\mu Gy)[$ 四半期] $) \times 0.8(Sv/Gy)/10^3(\mu Sv/mSv)\cdots$ 式(4)

2) β線による実効線量

六ヶ所再処理施設の安全審査におけるクリプトン-85 からの β 線による実効線量の算出方法に準じ、 β 線ガスモニタによる大気中の気体状 β 放射能濃度(1 時間値)を 1 年間分すべて積算し、これに皮膚の等価線量係数、体表面積の平均化係数及び組織加重係数を乗じて実効線量を算出する(式(5))。気体状 β 放射能濃度は、気体状 β 放射能計数率からバックグラウンド計数率を差し引き、クリプトン濃度換算係数を乗じて算出する(式(6))。バックグラウンド計数率は、原則として気体状 β 放射能計数率の推移のベースラインに相当する 1 年間の最頻値とする。

実効線量(mSv) = Σ (気体状 β 放射能濃度(kBq/m³))×A/365(day/y)/24(h/day)

正負すべての
$$\times 10^3 (mSv/Sv) \times 10^3 (Bq/kBq) \times B \times C$$
 ・・・式(5) 積算値(kBq/m^3)

気体状 β 放射能濃度(kBq/m³)= (気体状 β 放射能計数率(s¯¹)ーバックグラウンド計数率(s¯¹))

 $\times K \times 10^{-3} (kBq/Bq) \times 10^{6} (m^3/cm^3)$ ··· $\ddagger (6)$

「A:クリプトン-85 の β 線による皮膚等価線量係数^{注3} (4.1×10⁻⁷ (Sv/y)/(Bq/m³))

- B: 体表面積の平均化係数^{注3}(1)
- C:皮膚の組織加重係数^{注3} (0.01)

K:クリプトン濃度換算係数(Bq・cm⁻³/s⁻¹) (測定器ごとにクリプトン-85 標準ガスを用いて決定)

(2) 内部被ばくによる預託実効線量

- 1) 対象試料
 - ① 原子燃料サイクル施設

大気浮遊じん、大気、水道水、精米、ハクサイ、キャベツ、ダイコン、ナガイモ、バレイショ、 牛乳(原乳)、ワカサギ、シジミ、ヒラメ、コンブ、ホタテ、ヒラツメガニ、イカ、アワビ、ウニ等

② 東通原子力発電所

大気浮遊じん、大気、水道水、井戸水、精米、ハクサイ、ダイコン、キャベツ、バレイショ、アブラナ、牛乳(原乳)、牛肉、ヒラメ、カレイ、アイナメ、ウスメバル、コウナゴ、コンブ、ホタテ、アワビ、タコ、ウニ等

2) 対象核種

① 原子燃料サイクル施設

⁵⁴Mn, ⁶⁰Co, ¹⁰⁶Ru, ¹³⁴Cs, ¹³⁷Cs, ¹⁴⁴Ce, ³H, ¹⁴C, ⁹⁰Sr, ¹³¹I, ²³⁹⁺²⁴⁰Pu, U

② 東通原子力発電所

⁵⁴Mn、⁵⁹Fe、⁵⁸Co、⁶⁰Co、¹³⁴Cs、¹³⁷Cs、³H、⁹⁰Sr、¹³¹I

係数 A:D.C.Kocher, "Dose-Rate Conversion Factors for External Exposure to Photons and Electrons", NUREG/CR-1918, ORNL/NUREG-79(1981)

係数 B:「発電用軽水型原子炉施設の安全審査における一般公衆の線量評価について」(平成元年3月原子力安全委員会 了承、一部改訂平成13年3月原子力安全委員会)原子炉安全基準専門部会報告書

係数 C: "1990 Recommendations of the International Commission on Radiological Protection", ICRP Publication 60 (1991)

注3

各試料の対象核種は、「原子燃料サイクル施設に係る環境放射線等モニタリング基本計画」及び「東通原子力発電所に係る環境放射線モニタリング実施計画」による。

3) 預託実効線量の算出

成人を対象とし、対象試料中の放射性核種測定結果から式(7)及び式(8)により、食品等の種類ごと及び核種ごとに1年間の経口摂取又は吸入摂取による預託実効線量を算出し、それぞれを合算する。この際、測定結果から求めた核種濃度の食品等を1年間継続して摂取したこととする。

預託実効線量(mSv) = 年間の核種摂取量(Bq) × 実効線量係数(mSv/Bq) ・・・式(7)

年間の核種摂取量(Bg) = 施設に起因する核種濃度(食品等の種類ごと)

× 食品等の1日の摂取量 × 食品等の摂取日数 ···式(8)

食品等の1日の摂取量:別表1に示す。

食品等の摂取日数 :原則として365日とする。

実効線量係数:別表2に示す。

4) 施設に起因する核種濃度算出方法

環境試料中の放射性核種濃度に施設寄与が認められた場合には、別表 1 に示す食品等の種類ごとに次の①~⑦のとおり核種濃度を算出する。この際、「ND」は定量下限値として計算に用いる。

① 米、葉菜及び根菜・いも類における核種濃度

これらの食品等に該当する環境試料は、年 1 回採取していることから、食品等の種類ごとにそれぞれ最も高い測定値を核種濃度として用いる。ただし、トリチウムについては⑥、炭素-14 については⑦のとおりとする。

② 海水魚における核種濃度

海水魚に該当する環境試料は、年 1 回採取していることから、最も高い測定値を核種濃度として用いる。ただし、トリチウムについては⑥のとおりとする。

③ 淡水魚、無脊椎動物(海水産)、無脊椎動物(淡水産)、海藻類及び牛肉における核種濃度 これらの食品等に該当する環境試料は、年 1 回採取していることから、食品等の種類ごとにそれぞれ最も高い測定値を核種濃度として用いる。

④ 牛乳における核種濃度

牛乳は、年 4 回採取していることから、四半期ごとの全採取地点の最大値を年間で平均した値を核種濃度として用いる。ただし、トリチウムについては⑥のとおりとする。

⑤ 飲料水及び空気における核種濃度

これらの環境試料は、週1回~年4回採取しており、基本的にその地域で摂取されることから、 採取地点ごとに年間平均値を求め、それぞれ最も高い値を核種濃度として用いる。ただし、トリチウムについては⑥のとおりとする。

⑥ 米、葉菜、根菜・いも類、海水魚、牛乳、飲料水及び空気中トリチウム濃度

これらの食品等のトリチウム濃度については、次のア及びイのとおり算出する。

ア 米、葉菜、根菜・いも類、海水魚及び牛乳

食品中トリチウムについては、式(9)を用いて核種濃度を算出する。食品中の水素の質量割合は自由水及び有機物を合計したものであり、実効線量係数は数値の大きい有機物の値を用いる。

米、葉菜、根菜・いも類及び牛乳については、大気中水蒸気状トリチウム濃度に施設寄与が認められた場合、これらの環境試料に移行することが考えられるため、環境試料中の自由水及び有機物のトリチウム比放射能が大気中水分の比放射能と等しくなるものと仮定して食品等の

種類ごとに算出する。式(9)のトリチウム濃度は大気中水分のトリチウム測定結果から次のイで 求めた年間平均値の最大値を用いる。

海水魚については、ヒラメ等の自由水トリチウムの最も高い測定値を式(9)のトリチウム濃度として用いる。食品中トリチウムの核種濃度は自由水と有機物のトリチウムを合わせたものであり、有機物のトリチウム比放射能が自由水に等しいと仮定して算出する。

食品中トリチウムの核種濃度(Bg/kg)

= (トリチウム濃度(Bq/L) / 水 1L 当たりの水素量(kg/L)) × 食品中の水素の質量割合 ・・・式(9)

水 1L 当たりの水素量 :1×2/18=0.11(kg/L) 食品中の水素の質量割合:別表3に示す。

イ 飲料水及び空気

これらの環境試料については、採取地点ごとに年間平均値を求め、それぞれ最も高い値をトリチウム濃度として用いる。飲料水中ではほとんどのトリチウムが水の形で存在することから実効線量係数は水の値を用いる。また、空気中のトリチウムの化学形については、主に水、水素及び炭化水素が考えられるが、実効線量係数は最も大きい水の値を用いる。

大気中水蒸気状トリチウムの吸入摂取については、皮膚からの吸収分(呼吸による吸収分の 0.5 倍)を加算する。

⑦ 米、葉菜及び根菜・いも類中の炭素-14濃度

炭素-14 については、放射能濃度に比べ比放射能に施設寄与がより明確に認められることから、比放射能の施設寄与分から式(10)により放射能濃度の施設寄与分を求める。食品等の種類ごとに求めた施設寄与分の放射能濃度の最大値を預託実効線量の算出に用いる。

施設寄与分の炭素-14 濃度 (Bq/kg) = 放射能濃度測定値 (Bq/kg 生) × (施設寄与分の比放射能(Bq/g 炭素) / 比放射能測定値 (Bq/g 炭素)) ・・・式(10)

5) 施設寄与分を見積もるためのバックグラウンドの差し引き

① セシウム-137、ストロンチウム-90、プルトニウム等

過去 3 年間のモニタリング結果に定量下限値以上の測定値がある環境試料については、対象施設からの寄与が認められない測定値の平均値をバックグラウンドとして差し引く。

② 炭素-14

炭素-14 は、比放射能について施設寄与の弁別を行う。過去3年間の施設寄与が認められない 測定値が得られる場合は、その平均値をバックグラウンドとして差し引く。これが難しい場合は、そ れ以前の施設寄与が認められない測定値を用いて求めた炭素-14の減衰曲線から、当該年度の 炭素-14のバックグラウンドを推定し、これを差し引く。

3. 実効線量の表示方法

- (1) 単位はミリシーベルト(mSv)とする。
- (2) 外部被ばくによる実効線量、内部被ばくによる預託実効線量及びこれらを合計した実効線量は、 小数第3位を四捨五入し小数第2位までの値を記載する。

ただし、外部被ばくによる実効線量の下限値及び内部被ばくによる預託実効線量の下限値を 0.01mSv、合計した実効線量の下限値を 0.02mSv とし、算出した実効線量が下限値未満の場合は 下限値に「く」を付して記載する。

4. その他

本要領については、今後、必要に応じ適宜検討を加える。

別表1 食品等の1日の摂取量(成人)

食品等の種類	1日の摂取量	該当する環境試料
米	320 g	精米
葉 菜	370 g	ハクサイ、キャベツ、アブラナ
根菜・いも類	230 g	ダイコン、ナガイモ、バレイショ
海水魚	200 g	ヒラメ、カレイ、アイナメ、ウスメバル、コウナゴ等
淡 水 魚	30 g	ワカサギ
無脊椎動物(海水産)	80 g	ホタテ、ヒラツメガニ、イカ、アワビ、タコ、ウニ等
無脊椎動物(淡水産)	10 g	シジミ
海藻類	40 g	コンブ等
牛 乳	0.25 @	牛乳(原乳)
牛 肉	20 g	牛肉
飲 料 水	2.65 ℓ	水道水、井戸水
空気	22.2 m ³	大気浮遊じん、大気

^{・「}線量評価における食品等の摂取量について」(平成17年度第4回青森県原子力施設環境放射線等 監視評価会議評価委員会(平成18年1月24日開催)提出資料)による。

[・]大気:水蒸気状トリチウムの場合は、ICRP Publication 71 により、皮膚からの吸収分(呼吸による吸収分の 0.5 倍)を加算する。

別表2 1Bqを経口又は吸入摂取した場合の成人の実効線量係数

(単位:mSv/Bq)

核 種	経口摂取	吸 入 摂 取	備考
⁵⁴ Mn	7.1×10^{-7}	1.5×10^{-6}	
⁵⁹ Fe	1.8×10^{-6}	4.0×10^{-6}	
⁵⁸ Co	7.4×10^{-7}	2.1×10^{-6}	
⁶⁰ Co	3.4×10^{-6}	3.1×10^{-5}	
¹⁰⁶ Ru	7.0×10^{-6}	6.6×10^{-5}	
¹³⁴ Cs	1.9×10^{-5}	9.1×10^{-6}	
¹³⁷ Cs	1.3×10^{-5}	9.7×10^{-6}	
¹⁴⁴ Ce	5.2×10^{-6}	5.3×10^{-5}	
	1.8×10 ⁻⁸ (水)	1.8×10 ⁻⁸ (水)	飲料水及び空気
³ H	4.2×10 ⁻⁸ (有機物)		米、葉菜、根菜・いも類、 海水魚及び牛乳
¹⁴ C	5.8×10^{-7}		
⁹⁰ Sr	2.8×10^{-5}	3.6×10^{-5}	
U	4.9×10^{-5}	9.4×10^{-3}	
²³⁹⁺²⁴⁰ Pu	2.5×10^{-4}	5.0×10^{-2}	
¹³¹ I	1.6×10^{-5}	1.5×10^{-5}	

^{• &}lt;sup>134</sup>Cs、 ¹³⁷Cs、 ⁹⁰Sr 及び ²³⁹⁺²⁴⁰Pu の吸入摂取については、ICRP Publication 72 に示されているもののうち、タイプ M の値を用いた。

- •Uの経口摂取及び吸入摂取については、ICRP Publication 72 に示されている ²³⁴U、 ²³⁵U、 ²³⁸U のうち、 最も大きな値を用いた。
- ・上記以外の値は「環境放射線モニタリング指針(平成20年3月 原子力安全委員会)」による。
- ・ただし、分析方法等から化学形等が明らかな場合には、原則としてICRP Publication 72 などから当該 化学形等に相当する実効線量係数を使用する。

別表3 食品等の水素の質量割合

食品等の種類	該当する環境試料	水素の質量割合		
米	精米	0.066		
葉 菜	ハクサイ、キャベツ、アブラナ	0.11		
根菜・いも類	ダイコン、ナガイモ、バレイショ	0.10		
海水魚	ヒラメ等	0.10		
牛 乳	牛乳(原乳)	0.11		

・水素の質量割合は、「再処理事業所 再処理事業変更許可申請書及びその添付書類」(平成17年9月29日許可)から引用した。ただし、海水魚については、調査研究事業で実施したヒラメの組織自由水量と燃焼水量の実測値から算出した20検体分(平成22年度~平成26年度)の平均値を用いた。

4. 自然放射線等による線量算出要領

まえがき

青森県では、六ケ所再処理工場における使用済燃料を用いた総合試験(アクティブ試験)の開始を前に、平成17年度第4回青森県原子力施設環境放射線等監視評価会議において「六ケ所再処理工場の操業と線量評価について」等の議案が審議され、施設起因の線量を推定・評価するための県の基本的な考え方について了承された。

その中で、これまで本要領に基づき算出してきた自然放射線等による実効線量については、施設起因の線量の比較参考データとして引き続き算出していくこととしており、また、平成17年12月に営業運転を開始した東通原子力発電所についても、同様に自然放射線等による実効線量を算出することとしている。

これらを踏まえ、東通原子力発電所に係る対象核種を追加するとともに、本要領に基づき自然 放射線等による実効線量の算出を行うことを明確にするため、本要領の名称を「自然放射線等に よる線量算出要領」に変更した。

また、県が平成15~16年度に六ケ所村、東通村及びその周辺市町村において実施した食品摂取 量調査結果等をもとに、食品等の1日の摂取量の見直しを行うとともに、原子燃料サイクル施設 に係る環境放射線等モニタリングにおいて、積算線量の測定を平成17年度に熱ルミネセンス線量 計(TLD)から蛍光ガラス線量計(RPLD)に変更したことから、併せて所要の改訂を行った。

平成18年4月 青森県原子力センター

平成 13 年度版

まえがき

「環境放射線モニタリングに関する指針」(以下「モニタリング指針」という。) は、平成 12 年 8 月に、「必要に応じてウラン又はプルトニウムによる骨表面又は肺の等価線量を算定する」等、原子力緊急事態の発生への対応、研究炉、核燃料関連施設における事故への対応等に留意した改訂が行われ、平成 13 年 3 月には、国際放射線防護委員会(ICRP) 1990 年勧告の取入れに伴う関係法令の改正に合わせ「線量当量」から「線量」に変更するなどの用語の変更とともに、内部被ばくに係る線量係数(Sv/Bq)の変更に伴う改訂等が行われた。

以上をふまえ、「原子燃料サイクル施設に係る環境放射線等モニタリング結果の 評価方法」及び「測定結果に基づく線量当量算出要領」を改訂した。

平成13年7月 原子力安全対策課

平成6年度版

ま え が き

第1回原子燃料サイクル施設に係る環境放射線等監視<u>連絡</u>会議*(平成元年8月10日開催)において、「原子燃料サイクル施設に係る環境放射線等モニタリング構想、基本計画及び実施要領(平成元年3月策定(平成5年3月改訂)、青森県)」の考え方に基づく「原子燃料サイクル施設に係る環境放射線等モニタリング結果の評価方法」(以下、「評価方法」という。)の審議を始め、その後検討を重ねた結果、第4回会議(平成2年4月24日開催)において、「評価方法」が決定された。また、外部への分析委託のなくなる平成5年度からの適用をめざして、定量下限値(試料、核種ごとに分析の精度を担保するために定めた定量の下限値)が、第15回会議(平成5年2月15日開催)にて決定された。

そこで、「評価方法」に基づく線量当量を算出するにあたって更に具体的事項を整理して、ここに「測定結果に基づく線量当量算出要領」としてまとめたものである。

なお、原子燃料サイクル施設のうちウラン濃縮工場及び低レベル放射性廃棄物埋設センターは、 平常時運転において放射性物質を放出する可能性が極めて小さい施設であり、環境放射線等モニタリングの測定結果により、これを確認し評価してきている。したがって、これら施設に起因する実効線量当量を評価する必要はない。一方、再処理施設や原子力発電所は、平常時運転において、ごくわずかであるが、放射性物質を放出する施設であることから、これら施設に起因する公衆の実効線量当量を推定・評価し、自然放射線等による実効線量当量と比較検討することは意義のあることである。

以上の観点から、今後、本要領により、自然放射線等による実効線量当量を算出していくこととする。

平成6年4月 青森県環境保健部原子力環境対策室

^{*} 組織の拡充に伴い、平成2年8月10日に「原子燃料サイクル施設に係る環境放射線等監視<u>評価</u>会議」に名称を 変更した。

自然放射線等による線量算出要領

平成 6年 4月策定 平成 13年 7月改訂 平成 18年 4月改訂

1. 目 的

『原子燃料サイクル施設に係る環境放射線等モニタリング結果の評価方法』及び『東通原子力発電所に係る環境放射線モニタリング結果の評価方法』に基づき推定・評価する施設起因の線量と比較するため、自然放射線等による線量を算出することとし、その算出方法を定めるものである。

2. 外部被ばくによる実効線量

- (1) 評価対象期間中の蛍光ガラス線量計 (RPLD) による積算線量測定結果から、地点毎に年間積 算線量 (Gy) を求める。
- (2) 年間積算線量から対照用 RPLD の年間積算線量(宇宙線成分及び RPLD の自己照射の寄与分に相当)を差し引く。
- (3) 対照用 RPLD の測定結果に欠測があった場合は、適切な過去の測定結果を用いる。
- (4) その結果に、換算係数 0.8 (Sv/Gy) を乗じて、地点毎の実効線量を算出する。

3. 内部被ばくによる預託実効線量

- (1) 対 象 試 料
 - ① 原子燃料サイクル施設

大気浮遊じん、大気、水道水、農畜産物(精米、野菜、牛乳)、淡水産食品(ワカサギ、シジミ等)、海産食品(ヒラメ、コンブ、ホタテ、ヒラツメガニ、イカ、アワビ、ウニ等)

② 東通原子力発電所

大気浮遊じん、大気、水道水、井戸水、農畜産物(精米、野菜、牛乳、牛肉)、海産食品(ヒラメ、ウスメバル、コンブ、ホタテ、アワビ、タコ、ウニ等)

- (2) 対象核種
 - ① 原子燃料サイクル施設

⁵⁴Mn、⁶⁰Co、¹⁰⁶Ru、¹³⁴Cs、¹³⁷Cs、¹⁴⁴Ce、 ³H、¹⁴C、⁹⁰Sr、¹³¹I、²³⁹⁺²⁴⁰Pu、U

② 東通原子力発電所

⁵⁴Mn、 ⁵⁹Fe、 ⁵⁸Co、 ⁶⁰Co、 ¹³⁴Cs、 ¹³⁷Cs、 ³H、 ⁹⁰Sr、 ¹³¹I

ただし、各試料に対する対象核種は、「原子燃料サイクル施設に係る環境放射線等モニタリング基本計画(平成元年3月策定(平成17年10月改訂)、青森県)」及び「東通原子力発電所に係る環境放射線モニタリング実施計画(平成15年2月策定(平成17年10月改訂)、青森県)」による。

上記以外の人工放射性核種が検出された場合は、当該人工放射性核種も対象とする。

(3) 預託実効線量の算出

成人を対象とし、当該年度における対象試料中の放射性核種測定結果及び実効線量係数から 別式により、測定結果の平均値を用いて食品等の種類毎及び核種毎に 1 年間の経口摂取又は吸 入摂取による預託実効線量を算出し、それぞれを合算する。

(注) 必要があれば放射性ヨウ素による甲状腺の等価線量、ウラン又はプルトニウムによる骨 表面又は肺の等価線量を算出する。

4. 実効線量の表示方法及び集計方法

(1) ミリシーベルト単位 (mSv) で外部被ばくによる実効線量については小数第 4 位を四捨五入し 小数第 3 位までの値を、内部被ばくによる預託実効線量については小数第 5 位を四捨五入し、小

数第4位までの値をそれぞれ記載する。

- (2) 内部被ばくによる預託実効線量についての計算結果が、0.00005 ミリシーベルト未満の場合は、「NE」と表示する。
- (3) 対象期間内の測定結果の平均値が「ND」(定量下限値未満)の場合の預託実効線量は、「NE」と表示する。
- (4) 内部被ばくによる預託実効線量の計を求める場合は、「NE」を加算しない。
 - (注)放射性ヨウ素による甲状腺の預託等価線量、ウラン又はプルトニウムによる骨表面又は肺 の預託等価線量についても同様とする。

(別 式)

預託実効線量 (mSv) = [年間の核種摂取量 (Bq)] × [実効線量係数 (mSv/Bq)]

年間の摂取量(Bq) = 〔対象期間内の測定結果の平均値(食品等の種類毎)〕 × 〔食品等の1日の摂取量〕× 〔対象期間内摂取日数〕

対象期間内の測定結果の平均値

食品等の種類毎に対象核種毎の測定値を単純平均する。測定値に「ND」が含まれる場合は、「ND」を定量下限値として算出する。

ただし、全ての測定値が「ND」場合の平均値は「ND」とする。

食品等の1日の摂取量;別表1に示す。

摂取期間内摂取日数;原則として「365」日とする。

実効線量係数:別表2に示す。

(甲状腺の等価線量に係る線量係数は別表 3 に示す。なお、ウラン又はプルトニウムによる骨表面又は 肺の等価線量を算出する場合に必要な線量係数は、ICRP Publication 71 などを参考とする)

別表1 食品等の1日の摂取量(成人)

食品等の種類	1日の摂取量	該 当 す る 環 境 試 料	備考
米	320 g	精米	
葉 菜	370 g	ハクサイ、キャベツ、アブラナ等	
根菜・いも類	230 g	ダイコン、ナガイモ、バレイショ等	
海水魚	200 g	ヒラメ、ウスメバル、コウナゴ等	
淡 水 魚	30 g	ワカサギ等	
無脊椎動物 (海水産)	80 g	ホタテ、ヒラツメガニ、イカ、アワビ、ウニ、タコ等	
無脊椎動物(淡水産)	10 g	シジミ等	
海 藻 類	40 g	コンブ等	
牛乳	0.25 @	牛 乳 (原乳)	
牛 肉	20 g	牛 肉	
飲 料 水	2.65 ℓ	水道水、井戸水	
空 気	22.2 m^3	大気浮遊じん、大 気	

- ・ 「線量評価における食品等の摂取量について」(平成17年度第4回青森県原子力施設環境放射線等監視評価会 議評価委員会(平成18年1月24日開催)提出資料)による。
- 大気:水蒸気状トリチウムの場合は、ICRP Publication 71 により、皮膚からの吸収分(呼吸による吸収分の 0.5 倍)を加算する。

別表 2 1 Bq を経口又は吸入摂取した場合の成人の実効線量係数

核種	経 口 摂 取	吸 入 摂 取	備考
⁵⁴ Mn	7.1×10^{-7}	1.5×10^{-6}	
⁵⁹ Fe	1.8×10^{-6}	4.0×10^{-6}	
⁵⁸ Co	7.4×10^{-7}	2.1×10^{-6}	
⁶⁰ Co	3.4×10^{-6}	3.1×10^{-5}	
¹⁰⁶ Ru	7.0×10^{-6}	6.6×10^{-5}	
¹³⁴ Cs	1.9×10^{-5}	9.1×10^{-6}	
¹³⁷ Cs	1.3×10^{-5}	9.7×10^{-6}	
¹⁴⁴ Ce	5.2×10^{-6}	5.3×10^{-5}	
³ H	1.8×10^{-8}	1.8×10^{-8}	
¹⁴ C	5.8×10^{-7}		
⁹⁰ Sr	2.8×10^{-5}	3.6×10^{-5}	
U	4.9×10^{-5}	9.4×10^{-3}	
²³⁹⁺²⁴⁰ Pu	2.5×10^{-4}	5.0×10^{-2}	
131 _I	1.6×10^{-5}	1.5×10^{-5}	

(単位:mSv/Bq)

- ¹³⁴Cs、¹³⁷Cs、⁹⁰Sr 及び ²³⁹⁺²⁴⁰Pu の吸入摂取については、ICRP Publication 72 に示されているもののうち、タイプ M の値を用いた。
- ・ ³H の経口摂取、吸入摂取については、ICRP Publication 72 に示されているもののうち、水に対応する値を用いた。
- Uの経口摂取、吸入摂取については、ICRP Publication 72 に示されている ²³⁴U、²³⁵U、²³⁸U のうち、最も大きな値を用いた。
- ・ 上記以外の値は「環境放射線モニタリングに関する指針(平成13年3月 原子力安全委員会)」による。
- ・ ただし、分析方法等から化学形等が明らかな場合には、原則として ICRP Publication 72 などから当該化学形等に相当 する実効線量係数を使用する。

別表 3 1 Bg を経口又は吸入摂取した場合の成人の甲状腺の等価線量に係る線量係数 (単位:mSv/Bg)

核種	経 口 摂 取	吸 入 摂 取	備考
^{131}I	3.2×10^{-4}	2.9×10^{-4}	

・ 「環境放射線モニタリングに関する指針(平成13年3月 原子力安全委員会)」による。

参考 定量下限値を用いて算出した場合の成人の預託実効線量

定量下限値を用いて食品の種類毎及び核種毎に1年間の経口摂取又は吸入摂取による預託実効線量を算出した結果を下表に示す。

各々の算出結果及び合計した値は法令で定める周辺監視区域外線量限度 1 mSv/年(実効線量)を十分下回っている。

(1) 原子燃料サイクル施設

(mSv)

(1/ ///														
食品等 種	¥の 類	⁵⁴ Mn	⁶⁰ Co	¹⁰⁶ Ru	¹³⁴ Cs	¹³⁷ Cs	¹⁴⁴ Ce	³ H	¹⁴ C	⁹⁰ Sr	²³⁹⁺²⁴⁰ Pu	U	$^{131}{ m I}$	備考
米		NE	0.0002	0.0033	0.0009	0.0006	0.0009	_	0.0001	0.0001	0.0001	0.0001	_	
葉	菜	NE	0.0002	0.0038	0.0010	0.0007	0.0011	_	0.0002	0.0002	0.0001	0.0001		
根菜・い	も類	NE	0.0001	0.0024	0.0006	0.0004	0.0007	_	0.0001	0.0001	NE	0.0001	_	
海水	魚	NE	0.0001	0.0020	0.0006	0.0004	0.0006	NE	_	0.0001	NE	-	_	
淡水	魚	NE	NE	0.0003	0.0001	0.0001	0.0001	_	_	NE	NE	NE	_	
無脊椎!		NE	NE	0.0008	0.0002	0.0002	0.0002	_	_	NE	NE	_	_	
無脊椎!		NE	NE	0.0001	NE	NE	NE	_	_	NE	NE	_	_	
海藻	類	NE	NE	0.0004	0.0001	0.0001	0.0001	_	_	NE	NE	-		
牛	乳	NE	0.0001	0.0026	0.0007	0.0005	0.0007	_	_	0.0001	-	0.0001	_	
飲料	水	NE	NE	0.0004	0.0001	0.0001	0.0002	NE	_	NE	NE	-	_	
空	気	NE	NE	0.0001	NE	NE	NE	NE	_	NE	0.0001	NE	NE	
計		NE	0.0007	0.0162	0.0043	0.0031	0.0046	NE	0.0004	0.0006	0.0003	0.0004	NE	_

合計 0.0306 mSv

(2) 東通原子力発電所

(mSv)

(2) 米迪州 177元电/月									(11.	101)			
食品 種	場等の 類		⁵⁴ Mn	⁵⁹ Fe	⁵⁸ Co	⁶⁰ Co	¹³⁴ Cs	¹³⁷ Cs	³ H	⁹⁰ Sr	¹³¹ I	備	考
2	米		NE	0. 0002	NE	0. 0002	0. 0009	0.0006	_	0.0001	_		
葉	-	菜	NE	0. 0002	NE	0. 0002	0. 0010	0.0007	_	0.0002	0. 0009		
根菜・	いも	類	NE	0. 0001	NE	0. 0001	0. 0006	0.0004	_	0. 0001	_		
海	水 :	魚	NE	0. 0001	NE	0. 0001	0. 0006	0.0004	_	0.0001	_		
無脊村(海方	椎動水産		NE	NE	NE	NE	0.0002	0.0002	_	NE	_		
海	藻	類	NE	NE	NE	NE	0. 0001	0.0001	_	NE	0.0001		
牛	;	乳	NE	0. 0001	NE	0. 0001	0. 0007	0.0005	_	0. 0001	0.0006		
牛		肉	NE	NE	NE	NE	0. 0001	NE	_	NE	_		
飲料	料 ;	水	NE	NE	NE	NE	0. 0001	0. 0001	NE				
空		気	NE	NE	NE	NE	NE	NE	_	_	0.0024		
Ē	計		NE	0.0007	NE	0.0007	0. 0043	0.0030	NE	0.0006	0.0040		

合計 0.0133 mSv

原子力施設環境放射線調査報告書 (平成28年度第3四半期報) 平成29年6月 発行

編集・発行 青森県原子力センター

〒039-3215 青森県上北郡六ヶ所村大字倉内字笹崎400番地1

電話 0175-74-2251

ホームページURL

http://www.pref.aomori.lg.jp/soshiki/kikikanri/genshisenta/center-home.html