青森県危機管理局 原子力安全対策課長 安田 浩 殿

> 東北電力株式会社 執行役員 火力原子力本部 原子力部長 加藤 功

青森県原子力安全対策検証委員会報告を受けた 県の確認・要請に対する対応等について (報告)

平成23年11月21日の青森県知事からの要請に基づく,青森県原子力安全対策検証委員会報告を受けた県の確認・要請に対する対応状況等につきまして,別紙のとおり報告いたします。

以上

別紙 青森県原子力安全対策検証委員会報告を受けた県の確認・要請に対する対応等について(平成29年9月末現在)

青森県原子力安全対策検証委員会報告を受けた 県の確認・要請に対する対応等について (平成29年9月末現在)

平成29年10月 東北電力株式会社

目 次

1. はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
2. 検証委員会報告書の提言に対する対応について(1) 訓練の充実・強化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
(2) 中長期対策の着実な実施・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
(3) 地震・津波への対応強化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
(4) 県内事業者間による連携強化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
(5)より優れた安全技術の積極的導入・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
(6) 緊急時の環境モニタリング等の充実・強化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
(7) 確率論的安全評価 (PSA) で得られる事故シナリオによる 緊急安全対策等の有効性の確認・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
(8) リスクコミュニケーション活動等の展開・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
添付資料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8

1. はじめに

青森県原子力安全対策検証委員会(以下,「検証委員会」という。)より,「東通原子力発電所に係る緊急安全対策等については,対策が効果的に機能していくものと考える」との検証結果とともに,「今後も施設の安全性を継続的に確保するために取り組むべきもの」として,8つの提言が示されました。

当社は、青森県知事より、検証委員会からの提言を踏まえた東通原子力発電所の対応ならびに緊急安全対策等の中長期対策進捗状況についての確認・要請を受け、「青森県原子力安全対策検証委員会報告を受けた県の確認・要請に対する対応等について(平成29年3月末現在)」を平成29年4月28日に報告しておりますが、平成29年4月1日から平成29年9月末までの取り組み状況について、以下のとおり報告いたします。

2. 検証委員会報告書の提言に対する対応について

(1)訓練の充実・強化

- ①この期間の取り組み状況
 - ○訓練の充実・強化においては、これまでもリスク管理能力、危機管理能力および緊急時の対応能力を高める観点から、継続して訓練を実施しております。
 - ○この期間に実施した訓練は、以下のとおりです。

「訓練実施日および想定事象]

・平成29年6月12日:通常運転中,機器故障を起因とした原子炉冷却材漏 えい事象

<実施項目>

- (1) 発電所対策本部の運営訓練
- (2) 通報連絡訓練
- (3) 避難誘導訓練
- (4) モニタリング訓練
- (5) アクシデントマネジメント訓練
- (6) 広報対応訓練
- ・平成29年9月27日:通常運転中,地震を起因とした発電所外からの送電線を通じた電力供給(外部電源)の喪失,ならびに非常用ディーゼル発電機の故障により,全交流電源および原子炉注水機能が喪失する事象

<実施項目>

- (1)発電所対策本部の運営訓練
- (2) 通報連絡訓練
- (3) 避難誘導訓練
- (4) モニタリング訓練
- (5) アクシデントマネジメント訓練
- (6) 事故収東訓練
- (7) 広報対応訓練

- ○訓練では、緊急時の対応能力向上の観点から、事象の初期段階や重大な局面に おいて、発電所対策本部内の判断を迅速かつ適切に行うための対応方針の策定 や、本店と発電所間の情報共有の迅速性を高めるための運用方法を検証しまし た。
- ○平成29年8月28日~31日に、当社防災体制の充実・強化を目的として、 米国サザンニュークリア社ハッチ原子力発電所において、防災訓練の視察なら びに同社との意見交換等を行いました。

②今後の対応

○引き続き,リスク管理能力,危機管理能力および緊急時の対応能力を高める観点から,継続して訓練を実施してまいります。

(2) 中長期対策の着実な実施

- ①この期間の取り組み状況
 - ○現時点における緊急安全対策等に係る中長期対策の進捗状況は以下のとおりです。また、配備済みの資機材に関する訓練を計画的に実施し、対応能力を継続的に高めております。

主な中長期対策	進捗状況
電源の確保対策	
① 大容量電源装置の設置 (平成23年度上期中)	・当初計画より前倒しで設置済み。(平成23年8月24日) なお,大容量電源装置のバックアップとして,電源車(4 台)を配備している。
② 上北変電所を経由せずに原子 力施設に供給可能な送電線の 新設 (平成26年6月)	・青森変電所と六ヶ所変電所を直接結ぶ送電線の新設工事 および区間変更工事を完了済み。(平成 26 年 6 月 30 日)
③ 送電鉄塔の信頼性向上 (平成23年度中)	・支持がいしへの免震金具取り付け済み。(平成23年11月24日) ・送電鉄塔基礎の安定性について,現地調査および評価により問題ないことを確認し,旧原子力安全・保安院へ報告済み。(平成24年2月17日)
冷却機能の確保対策	
④ 海水ポンプモータの洗浄・乾燥 装置の配備 (平成23年度上期中)	・当初計画より前倒しで配備済み。(平成23年8月24日)
⑤ 予備海水ポンプモータの配備 (平成 24 年度上期中)	・当初計画より前倒しで配備済み。(平成24年3月30日)

主な中長期対策	進捗状況
⑥ 代替海水ポンプの配備 (平成 24 年 6 月)	・代替海水ポンプを配備済み。(平成24年6月29日)
地震・津波への対策	
⑦ 防潮堤・防潮壁の設置 (平成 25 年度中)	・防潮堤の設置工事を実施済み。(平成25年5月29日)・防潮壁の設置工事(取水路,放水路の各開口部)を実施済み。(平成24年10月31日)
⑧ 建屋扉の水密性向上 (平成 31 年度中)	・建屋防水性の更なる向上を図るため、建屋貫通部や扉の 強化工事を実施済み。(平成24年3月30日) ・タービン建屋内海水系配管からの溢水等を考慮した範囲 の建屋貫通部について、強化工事を実施済み。(平成25年2月28日) ・建屋入退域ゲート手前の扉について、水密化を実施済み。 (平成24年3月29日) ・建屋水密扉の詳細設計および設置工事を実施中。(設置工事:平成24年10月15日現地着工、新規制基準を踏まえた設計実施中)
閉込機能の確保対策	
⑨ 水素ベント装置の設置 (平成24年度中)	・原子炉建屋ベント装置を設置済み。(平成 24 年 6 月 29 日)・原子炉建屋への水素検知器を設置済み。(平成 24 年 7 月 31 日)

○安全性向上対策については、上記のほかにも、深層防護の考え方に基づき、多重化・多様化等を図ることで厚みを加えていくこととしており、自主的かつ継続的に様々な対策に取り組みながら、平成31年度の工事完了を目指して進めております。(実施状況については、添付資料参照)

主な取り組み例は、以下のとおりです。

- ・原子炉格納容器圧力逃がし装置(フィルタベント系)の設置工事を実施して おります。(平成25年5月29日着手)
- ・緊急時対策建屋の設置工事を実施しております。(平成25年6月10日着手)
- ・淡水貯水槽の設置工事を実施しており(平成25年6月24日着手),現在は、貯水槽内部の防水塗装工事や付帯設備工事を行っております。

②今後の対応

- ○今後も,新規制基準適合性審査(以下,「適合性審査」という。)の動向等を踏まえ,設計の見直しや必要な反映事項がないか等の検討を適宜行いながら,着実に工事を進めてまいります。
- ○安全性向上対策については、引き続き、適合性審査を通じて、原子力規制委員 会の確認を受けてまいります。

(3) 地震・津波への対応強化

- ①この期間の取り組み状況
 - ○地震・津波に関しては、新規制基準および関連する知見を踏まえ詳細に評価を行っており、この評価内容については、現在、原子力規制委員会による適合性審査において確認を受けているところです。なお、平成29年3月17日の審査会合で、原子力規制委員会から原子炉建屋直下に分布するf-2断層は「将来活動する可能性のある断層等に該当しないことを確認」とのコメントがなされています。

このような中、「敷地の地形、地質・地質構造」に係る審査会合が平成29年6月9日および9月8日に、津波に係る審査会合が平成29年8月10日に開催されました。

平成29年6月の審査会合では、耐震重要施設直下のf-1 断層やm-a 断層の評価に係る追加調査計画の内容について説明しました。

平成29年9月の審査会合では,追加調査結果等を踏まえ,耐震重要施設直下の断層の5ちf-1断層について,当断層を切る「F-10断層」との関係性(形成時期の違いなど)を示し,f-1断層が「将来活動する可能性のある断層等には該当しない」ことを改めて説明しました。

平成29年8月の審査会合では、基準津波の策定について審議され、連動型 地震に起因する津波の波源域を複数想定し、そのうち発電所に最も影響の大き い「十勝沖・根室沖から三陸沖北部の連動型地震」を波源域とすることを説明 しました。

②今後の対応

○地震・津波に関する評価については、引き続き、審査にしっかりと対応してまいります。

(4) 県内事業者間による連携強化

- ①この期間の取り組み状況
 - ○当社は「青森県内原子力事業者間安全推進協力協定」(平成23年12月9日 締結)に基づき、青森県内における原子力災害への対応能力向上のための活動等について、青森県内原子力事業者と継続的に相互協力を行っております。
 - ○同協定に基づき、平常時における安全管理等に係る協力や訓練等による原子力 災害への対応能力向上、ならびに原子力災害時における協力活動を目的とした 会議、協力活動について、以下のとおり実施しております。

「会議〕

原子力安全推進作業会(平成29年6月28日,平成29年9月27日)

<内容>

- ・原子力事業者防災業務計画の見直し等に関する情報共有
- ・新規制基準等の対応状況に関する情報共有

「協力活動]

- <平常時における安全管理等に係る協力活動>
 - ・電源開発株式会社による防災講演会への参加(平成29年9月4日)

<訓練等による原子力災害への対応能力向上のための協力活動>

各社が日常的に行っている防災訓練「個別(要素)訓練等〕の相互見学

②今後の対応

○引き続き、「青森県内原子力事業者間安全推進協力協定」に基づく活動を通じ、 更なる安全性や技術力の向上と原子力災害への対応能力向上に向けた協力体 制を構築してまいります。

(5)より優れた安全技術の積極的導入

- ①この期間の取り組み状況
 - ○汚染水処理技術等については,「技術研究組合 国際廃炉研究開発機構(略称: IRID) | ** に参画し、技術研究開発を行っております。
 - ※ 東京電力株式会社(現 東京電力ホールディングス株式会社)福島第一原子力発電所における中長期措置に関して、燃料デブリ取り出し準備に係る研究開発、放射性廃棄物処理・処分に係る研究開発ならびに使用済燃料プールからの燃料取り出しに係る研究開発を行い、廃止措置技術の確立を目指し、平成25年8月に発足した技術研究組合。組合員は、電力会社やメーカ等から構成され、共同研究の成果は、組合員相互で活用していくこととしている。

②今後の対応

- ○津波による冠水等を考慮したポンプ,水素処理技術の安全技術について,引き続き最新動向の把握に努めるとともに,技術的な検討や,発電所のシステム全体としての最適化等を検討した上で,新たな技術の導入に向けて検討してまいります。
- ○東通原子力発電所の重要な安全機能に厚みを加えていくための対策について, 引き続き検討してまいります。

(6) 緊急時の環境モニタリング等の充実・強化

- ①この期間の取り組み状況
 - ○原子力規制委員会主催の「原子力事業者防災訓練報告会」(平成29年6月16日開催)において、防災訓練における良好事例や現状の課題等について、原子力規制庁や電力各社との意見交換を行っております。当社からは「情報共有の取り組み(改善)」について以下の良好事例を紹介しております。
 - ・ERC (原子力規制庁緊急時対応センター) に対し,事象の進展や想定されるリスク等の予見的な情報を発信。
 - ・ERCに派遣する要員の役割(対応事項)を明確化し、質問対応やプラント 情報の共有を円滑に実施。
 - 〇原子力災害対策指針等の改訂を踏まえ、EAL (緊急時活動レベル)の通報基準 や通報様式の変更等を東通原子力発電所原子力事業者防災業務計画修正案に反 映し、立地自治体との協議を開始しております。(平成29年8月10日)

②今後の対応

○引き続き、原子力災害への対応能力向上に向けて、緊急時の環境モニタリング や国・自治体等への通報システムの維持、ならびに東通原子力発電所の防災体 制の充実に取り組んでまいります。

(7)確率論的安全評価(PSA)で得られる事故シナリオによる緊急安全対策等の有効性の確認

- ①この期間の取り組み状況
 - ○東京電力株式会社(現 東京電力ホールディングス株式会社)福島第一原子力発電所の事故を踏まえた旧原子力安全・保安院の指示*に基づく「東通原子力発電所1号機の安全性に関する総合評価(ストレステスト)」の一次評価において確認した緊急安全対策等の有効性について、訓練の実施を通じて確認しております。
 - ※ 「東京電力株式会社福島第一原子力発電所における事故を踏まえた既設の発電用原子 炉施設の安全性に関する総合評価の実施について(指示)」(平成23年7月22日 付)
 - ○確率論的リスク評価(PRA)により抽出された事故シナリオに対するシビア アクシデント対策等の有効性について評価を行っており、これらについては、 適合性審査を通じて、原子力規制委員会の確認を受けているところです。

②今後の対応

○シビアアクシデント対策等の有効性について, 引き続き, 適合性審査を通じて, 原子力規制委員会の確認を受けてまいります。

(8) リスクコミュニケーション活動等の展開

- ①この期間の取り組み状況
 - ○地元住民への全戸訪問対話活動や広報紙の発行,広く一般の方へ向けたホームページ公表等の広報活動を継続して実施しております。
 - ・全戸訪問対話活動(平成29年6月5日~23日)
 - ・広報紙の発行(平成29年度上期6回)
 - ・ホームページ公表(プレス資料、安全性向上対策の実施状況)
 - ○発電所の理解浸透・促進の観点から、ホームページ上で、安全対策・適合性審査の状況や発電所内の設備を、動画やイラスト等で閲覧できるようにしている等、継続的にコンテンツの充実化を図っているほか、ステークホルダーの皆さまに発電所内を視察いただいております。(91回 1,131名参加)

②今後の対応

- ○地域との協調を図りつつ,原子力に関する理解促進を図るための勉強会を今後 も継続するとともに、新たな取り組みについても検討してまいります。
- ○新規制基準に沿って実施する各種重大事故シナリオへの対応方法および確率 論的リスク評価 (PRA) 結果等を題材に、発電所の事故のリスクやその影響 を整理した上で、従来の広報媒体を活用しながら、リスクコミュニケーション 活動を展開してまいります。
- ○災害時における県民の皆さまへの情報開示・情報共有の仕組みについて、関係 個所と連携しながら引き続き検討し、住民の皆さまへの理解活動に努めてまいります。

以上

安全性向上対策の実施状況

※枠内の黄色で示した箇所は、新規制基準や最新知見等を踏まえて実施する安全性向上対策を示す。

平成29年9月末現在

項目	対応内容	概要	写真、イメージ図	対応状況	完了時期 (完了予定)	平成29年9月末現在 備 考
	•耐震工事	更なる耐震性向上が必要と判断した配管等について、サポートの追加や強化を実施(従来より、耐震安全性に係る新たな科学的・技術的知見の継続的な収集・分析を踏まえた耐震工事を実施)		工事中	平成31年度	平成26年3月28日工事開始
	・防潮堤・防潮壁の設置	敷地内浸水防護対策として防潮堤のかさ上げ (高さ約3m、海抜約16m)および取水路・放 水路の開口部周辺への防潮壁の設置を実施	防潮域約3m (海面からの高さ約18m)	完了	平成25年5月	
	- 開閉所の強化対策	開閉所設備等の信頼性向上対策として、設備 の耐震対策を実施	_	工事中	平成31年度	平成24年7月11日工事開始、 開閉所の浸水対策については、 上欄の防潮堤・防潮壁の設置に より対応済みと評価
◆地震・津波への対策		建屋内への浸水防止対策として、水圧による 扉の破損防止のため、扉内側へカンヌキ(H 鋼)での補強を実施		完了	平成24年2月	
		建屋内への浸水防止対策として、建屋扉への ゴムシール取り付けや水密扉への取替えを実 施		完了	平成24年10月	
		溢水損傷防止対策として、水密扉を設置	3	工事中	平成31年度	平成24年6月7日工事開始
	・建屋内電源盤周り等への堰(せき)の設置	建屋内の電源盤および非常用ディーゼル発 電機等への浸水防止対策として、浸水経路へ 堰(せき)止めを設置		完了	平成23年12月	

◆地震・津波への対策	・建屋内排水用ポンプの配備	万一、建屋内が浸水した場合の排水対策として、浸水した海水を建屋外に排水するポンプを配備		完了	平成23年10月	
	・上北変電所を経由しない送電線の新設	上北変電所が全故障した場合でも、下北地区 の原子力施設に電力を送電できるよう、上北 変電所を経由しない送電線を新設	万·州公司 日本市市政 (日本市市政 (日本市市政 (日本市市政 (日本市市政 (日本市 (日本市 (日本市 (日本市 (日本市 (日本市 (日本市 (日本市	完了	平成26年6月	[新設送電線] •六ヶ所C線(平成26年6月10日使用開始) •青森2号線(平成26年6月30日使用開始)
	・外部電源の耐震性強化	地震に対する外部電源の信頼性を高めるため、原子力発電所の外部電源に関わる送電線の支持がいしについて、免震金具の取付を実施	東京会社・大学・大学・大学・大学・大学・大学・大学・大学・大学・大学・大学・大学・大学・	完了	平成23年11月	送電鉄塔については、現地調査 および評価により基礎の安定性 に問題がないことを確認済
		原子炉等を冷却するために必要な注水設備 や中央制御室等に電力を供給するため、津 波等の影響を受けない高台に配備		完了	平成23年3月	·電源車3台配備 ·電源車1台追加配備(平成24年 4月)
◆電源の確保対策	- 電源車の配備	重大事故等対策として、順次、追加配備		工事中	平成31年度	·電源車1台追加配備(平成29年3月)
	大容量電源装置の配備	原子炉等を冷却するために必要な大型のポンプ等に電力を供給するため、津波等の影響を受けない高台(海抜約23m)に配備		完了	平成23年8月	
	・タンクローリーの配備	電源車等の代替電源設備への燃料補給用と して1台配備		完了	平成23年8月	原于炉等への代替注水設備に対する燃料補給用としても使用
	・プンソローリーの印用	重大事故等対策として、追加配備		工事中	平成31年度	・2台追加配備(平成27年10月)、 運用に向けた準備を継続中

◆電源の確保対策	・緊急時直流電源設備の設置	直流電源設備が使用できない場合に、中央 制御室内の主要監視計器等に電源供給する ため、固定式の直流電源設備を設置		完了	平成25年8月	
	・電源の強化対策	重大事故等が発生した場合、必要な電力を確保するため、ガスタービン発電機、可搬型直流電源設備等の設置、蓄電池の増強等のほか、ガスタービン発電機等に使用する地下軽油タンクの設置、既存軽油タンクの地下化		工事中	平成31年度	平成25年6月27日工事開始 (写真はガスタービン発電機のイメージ)
	・常設直流電源の設置(3系統目)	電源の更なる信頼性向上を図るため、常設の 直流電源を設置	_	仕様検討中	本体施設等に関わる 工事計画認可時よ り、5年以内に設置 予定	新規制基準を踏まえ、本体施設等(原子炉等)に関わる工事計画 認可時より、5年以内に設置予定
	- 消防車の配備	原子炉への注水を長期的に継続して行うための水源への水補給や原子炉や使用済燃料 プールへの代替注水手段として消防車を配備		完了	_	3.11東北地方太平洋沖地震以前 より2台配備済
	・代替注水用接続口の設置	原子炉への注水手段の多様化および信頼性 向上のため、注水用のホース接続口を原子 炉建屋内に設置		完了	平成25年4月	
◆冷却機能の確保対策	・非常用冷却海水系ポンプモータ洗浄・乾燥のための復旧資機材の配備	既設の非常用冷却海水系ポンプモータが被 水した場合に、応急復旧できるよう洗浄・乾燥 資機材を配備		完了	平成23年8月	
	・非常用冷却海水系ポンプモータ予備品の確保	既設の非常用冷却海水系ポンプモータが被 水した場合に、速やかに復旧できるよう予備 品を確保		完了	平成24年3月	
	・代替非常用冷却海水ポンプの配備	既設の非常用冷却海水系ポンプが使用不可 となった場合でも、原子炉や使用済燃料プー ルなどを除熱冷却するための代替のポンプ (送水車)を設置	ORDERS A SECOND	完了	平成24年6月	送水車(代替非常用冷却海水ポンプ)1台配備

	- 注水-除熱機能の強化対策	原子炉および使用済燃料プール内の、燃料の著しい損傷や格納容器の損傷を防止するため、高圧・低圧代替注水設備、大容量送水ポンプ車、可搬型熱交換器、代替格納容器スプレイ設備の設置や格納容器頂部の密閉性確保対策等を実施		工事中	平成31年度	一部対策は閉込機能も併せ持つ 平成25年6月27日工事開始 ・大容量送水ポンプ車5台納入済 み(平成27年10月)、運用に向け た準備を継続中 (図は高圧代替注水設備のイメー ジ)
◆冷却機能の確保対策	・ウォーターゲートの配備	河川の渇水時等に、河川を堰止めて必要な水を確保するための可搬式資機材を配備		完了	平成25年2月	
	- 淡水源の確保対策	重大事故等の収束に必要な冷却水源の確保のため、淡水貯水槽(約3,600m ³ ×3基)の設置や既設配管の改造等を実施		工事中	平成31年度	平成25年6月24日工事開始
	・格納容器ベント弁開閉用の手動ハンドル設置	全交流電源喪失時において、万一、電源車等の代替電源による電源供給が行えない場合に備え、格納容器ベント弁を手動で開閉できるようハンドルを設置		完了	平成24年3月	除熱確保の機能も併せ持つ
◆閉込機能の確保対策	・原子炉格納容器圧力逃がし装置(フィルタベント系)の設置	格納容器の過圧破損を防止するために行う ベントの際に、放射性物質の放出を抑制する 原子炉格納容器圧力逃がし装置(フィルタベ ント系)の設置	大気放出格納容器からフィルタ設備	工事中	平成31年度	除熱確保の機能も併せ持つ 平成25年5月29日工事開始
	・静的水素再結合装置の設置	炉心損傷等が発生した場合に、格納容器から原子炉建屋内に漏えいした水素を、動力を用いることなく触媒により再結合させ、建屋内の水素濃度の上昇を抑制し、水素爆発を防止するための装置を設置		工事中	平成31年度	平成25年6月27日工事開始

	·水素濃度監視設備の設置	炉心損傷等が発生した場合における原子炉 建屋内の水素濃度を監視するため、水素検 知器を設置		完了	平成24年7月	(写真は、設置済みの水素検知 器)
	·/小茶···································	重大事故等対策として、耐震性能等の向上の 観点から、新たに水素濃度計を設置		工事中	平成31年度	P成25年6月27日工事開始
◆閉込機能の確保対策	・原子炉建屋ベント装置の設置	炉心損傷等が発生した場合の水素爆発防止 対策として、原子炉建屋内に滞留した水素を 迅速・確実に放出するためのベント装置を、 原子炉建屋屋上に設置		完了	平成24年6月	
	・放水砲、シルトフェンスの配備	放射性物質の大気中への拡散を可能な限り抑制するため、原子炉建屋損壊時等に建屋へ放水できるよう放水砲を配備するとともに、それにより放射性物質が海へ流出した場合に、海洋汚染拡大を抑制するための設備を配備	1001	仕様検討中	平成31年度	(図は、放水砲のイメージ)
	- 中央制御室の作業環境の確保	全交流電源喪失時においても、運転員の対応操作等に支障をきたさぬよう、電源車等の代替電源から中央制御室の換気空調設備へ電源を供給し、中央制御室の居住性を確保		完了	平成23年6月	
		重大事故等対策として、空調、照明等、運転 員が中央制御室にとどまるために必要な設備 を代替交流電源から給電できる設計とする等 の対策を実施		仕様検討中	検討中 平成31年度	
◆事故対応の基盤整備	日	地震等の影響により、万一、事務本館の緊急 時対策室が使用できない場合にも、指揮所機 能が損なわれることがないよう、代替緊急時 対策所を整備		完了	平成24年7月	
	·緊急時対策所の整備	大規模な原子力災害が発生した場合の現地 対策本部となる指揮所機能の強化を目的に 緊急時対策建屋を設置し、同建屋内に電源 設備、通信連絡設備、居住性等を確保した緊 急時対策所を整備	_	工事中	平成31年度	平成25年6月10日工事開始

	・緊急時における発電所構内通信手段の確	事故等の緊急時に既設の電源機能が喪失した場合においても、通信機能を確保するため、電源車等の代替電源から通信設備へ電源を供給するなど、通信機能を強化		完了	平成23年4月	
	保	重大事故等対策として、発電所内および所外 必要箇所との通信連絡のため、多様性を有し た通信連絡手段等の観点から更なる追加工 事を実施	性を有し _{てまれ}	工事中	平成31年度	平成25年6月27日工事開始
	・携行型通話装置の配備	通信手段の強化のため、中央制御室と各現場を専用通信線で接続した携行型の通話装置を配備		完了	平成25年2月	
▲車体製件の甘穀物体	・監視系の強化対策	重大事故等が発生した場合でも、原子炉・使用済燃料プール等の状態を把握するため、計器の設置や手段の整備等を実施	_	工事中	平成31年度	平成25年6月27日工事開始
◆事故対応の基盤整備		モニタリングポストのバックアップ電源について、代替電源からの電源供給範囲を4台から全8台に拡大		完了	平成23年12月	
	・モニタリングポストの強化	伝送系の多様化を目的に、現状の有線に加え、無線による伝送環境を整備		仕様検討中	平成31年度	
	・当社共用モニタリングカーの増配備	緊急時の環境モニタリングの強化策として、モニタリングカーを、東通発電所構内に1台増配備。当該車輌は女川発電所にも応援出動可能		完了	平成25年3月	
	- 発電所構内道路および橋梁の補強	地震による構内アクセス道路の不等沈下を防止するための道路補強と橋梁の落橋防止対 策を実施		完了	平成24年12月	写真は道路補強工事中の合成繊 維敷設の様子

	- がれき撤去用重機の配備	津波等によりがれきが生じた場合に、構内作 業の迅速化を図るため、ホイールローダを配 備		完了	平成23年6月	•1台配備 •1台追加配備(平成24年4月)
	*かれた 放公川 里依の間 漏	がれき撤去用重機の多様化を図るため、バックホウ1台を配備		完了	平成24年4月	
◆事故対応の基盤整備	- 高線量対応防護服の配備	緊急時における作業員の放射線防護のため、高線量対応防護服(タングステン入り)等の資機材を配備		完了	平成23年7月	
	・GPS津波監視システムの設置	津波監視の強化を目的として、国土交通省の GPS波浪計データを活用し、津波の大きさや 到達時間を予測するシステムを配備		完了	平成26年3月	
	•火災損傷防止対策	火災により重要施設の機能が失われないよう、火災の発生防止対策、速やかな感知・消火対策、影響軽減対策を実施(貫通部のシール施工等)。また、森林火災の延焼防止策として、樹木を伐採、除草し、防火帯を設置		工事中	平成31年度	平成25年6月24日工事開始 (写真は貫通部シール施工例)
◆地震・津波以外の様々なリス	-溢水損傷防止対策	配管破断等による建屋内溢水により重要施設の機能が失われないよう、溢水源の低減対策、設備の防護対策を実施(貫通部の止水シール施工等)		工事中	平成31年度	平成25年6月24日工事開始 (写真は貫通部止水施工例)
ク事象への対策	-火山、竜巻等防護対策	火山、竜巻等の想定される自然現象によって 発電所の安全性が損なわれないよう、設備へ の影響評価を踏まえ、必要に応じて、火山に 対しては火山灰除去資機材の配備等、竜巻 に対しては屋外の資機材の固縛等を実施	_	検討中	平成31年度	
	・特定重大事故等対処施設の設置 	故意の航空機衝突等に備え、格納容器破損 を防止するために必要な施設を設置	第二年	仕様検討中	本体施設等に関わる 工事計画認可時よ り、5年以内に設置 予定	新規制基準を踏まえ、本体施設 等(原子炉等)に関わる工事計画 認可時より、5年以内に設置予定